Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 496 - 503
1 May 2023
Mills ES Talehakimi A Urness M Wang JC Piple AS Chung BC Tezuka T Heckmann ND

Aims

It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion.

Methods

A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion.


The Bone & Joint Journal
Vol. 97-B, Issue 4 | Pages 492 - 497
1 Apr 2015
Ike H Inaba Y Kobayashi N Yukizawa Y Hirata Y Tomioka M Saito T

In this study we used subject-specific finite element analysis to investigate the mechanical effects of rotational acetabular osteotomy (RAO) on the hip joint and analysed the correlation between various radiological measurements and mechanical stress in the hip joint.

We evaluated 13 hips in 12 patients (two men and ten women, mean age at surgery 32.0 years; 19 to 46) with developmental dysplasia of the hip (DDH) who were treated by RAO.

Subject-specific finite element models were constructed from CT data. The centre–edge (CE) angle, acetabular head index (AHI), acetabular angle and acetabular roof angle (ARA) were measured on anteroposterior pelvic radiographs taken before and after RAO. The relationship between equivalent stress in the hip joint and radiological measurements was analysed.

The equivalent stress in the acetabulum decreased from 4.1 MPa (2.7 to 6.5) pre-operatively to 2.8 MPa (1.8 to 3.6) post-operatively (p < 0.01). There was a moderate correlation between equivalent stress in the acetabulum and the radiological measurements: CE angle (R = –0.645, p < 0.01); AHI (R = –0.603, p < 0.01); acetabular angle (R = 0.484, p = 0.02); and ARA (R = 0.572, p < 0.01).

The equivalent stress in the acetabulum of patients with DDH decreased after RAO. Correction of the CE angle, AHI and ARA was considered to be important in reducing the mechanical stress in the hip joint.

Cite this article: Bone Joint J 2015;97-B:492–7.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 53 - 56
1 Nov 2013
Su EP Barrack RL

Cementless femoral stems are currently preferred for total hip replacement (THR) in the United States. Improvements in stem design, instrumentation and surgical technique have made this technology highly successful, reproducible, and applicable to the vast majority of patients requiring a THR. However, there are ongoing developments in some aspects of stem design that influence clinical results, the incidence of complications and their inherent adaptability in accommodating the needs of individual patients. Here we examine some of these design features.

Cite this article: Bone Joint J 2013;95-B, Supple A:53–6.


The Bone & Joint Journal
Vol. 95-B, Issue 1 | Pages 23 - 30
1 Jan 2013
Kiernan S Hermann KL Wagner P Ryd L Flivik G

Progressive retroversion of a cemented stem is predictive of early loosening and failure. We assessed the relationship between direct post-operative stem anteversion, measured with CT, and the resulting rotational stability, measured with repeated radiostereometric analysis over ten years. The study comprised 60 cemented total hip replacements using one of two types of matt collared stem with a rounded cross-section. The patients were divided into three groups depending on their measured post-operative anteversion (< 10°, 10° to 25°, >  25°). There was a strong correlation between direct post-operative anteversion and later posterior rotation. At one year the < 10° group showed significantly more progressive retroversion together with distal migration, and this persisted to the ten-year follow-up. In the < 10° group four of ten stems (40%) had been revised at ten years, and an additional two stems (20%) were radiologically loose. In the ‘normal’ (10° to 25°) anteversion group there was one revised (3%) and one loose stem (3%) of a total of 30 stems, and in the > 25° group one stem (5%) was revised and another loose (5%) out of 20 stems. This poor outcome is partly dependent on the design of this prosthesis, but the results strongly suggest that the initial rotational position of cemented stems during surgery affects the subsequent progressive retroversion, subsidence and eventual loosening. The degree of retroversion may be sensitive to prosthetic design and stem size, but < 10° of anteversion appears deleterious to the long-term outcome for cemented hip prosthetic stems.

Cite this article: Bone Joint J 2013;95-B:23–30.


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 68 - 76
1 Jun 2019
Jones CW Choi DS Sun P Chiu Y Lipman JD Lyman S Bostrom MPG Sculco PK

Aims

Custom flange acetabular components (CFACs) are a patient-specific option for addressing large acetabular defects at revision total hip arthroplasty (THA), but patient and implant characteristics that affect survivorship remain unknown. This study aimed to identify patient and design factors related to survivorship.

Patients and Methods

A retrospective review of 91 patients who underwent revision THA using 96 CFACs was undertaken, comparing features between radiologically failed and successful cases. Patient characteristics (demographic, clinical, and radiological) and implant features (design characteristics and intraoperative features) were collected. There were 74 women and 22 men; their mean age was 62 years (31 to 85). The mean follow-up was 24.9 months (sd 27.6; 0 to 116). Two sets of statistical analyses were performed: 1) univariate analyses (Pearson’s chi-squared and independent-samples Student’s t-tests) for each feature; and 2) bivariable logistic regressions using features identified from a random forest analysis.


The Bone & Joint Journal
Vol. 101-B, Issue 4 | Pages 426 - 434
1 Apr 2019
Logishetty K van Arkel RJ Ng KCG Muirhead-Allwood SK Cobb JP Jeffers JRT

Aims

The hip’s capsular ligaments passively restrain extreme range of movement (ROM) by wrapping around the native femoral head/neck. We determined the effect of hip resurfacing arthroplasty (HRA), dual-mobility total hip arthroplasty (DM-THA), conventional THA, and surgical approach on ligament function.

Materials and Methods

Eight paired cadaveric hip joints were skeletonized but retained the hip capsule. Capsular ROM restraint during controlled internal rotation (IR) and external rotation (ER) was measured before and after HRA, DM-THA, and conventional THA, with a posterior (right hips) and anterior capsulotomy (left hips).


The Bone & Joint Journal
Vol. 99-B, Issue 9 | Pages 1140 - 1146
1 Sep 2017
Shoji T Yamasaki T Izumi S Murakami H Mifuji K Sawa M Yasunaga Y Adachi N Ochi M

Aims

Our aim was to evaluate the radiographic characteristics of patients undergoing total hip arthroplasty (THA) for the potential of posterior bony impingement using CT simulations.

Patients and Methods

Virtual CT data from 112 patients who underwent THA were analysed. There were 40 men and 72 women. Their mean age was 59.1 years (41 to 76). Associations between radiographic characteristics and posterior bony impingement and the range of external rotation of the hip were evaluated. In addition, we investigated the effects of pelvic tilt and the neck/shaft angle and femoral offset on posterior bony impingement.


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 780 - 785
1 Jun 2015
Baauw M van Hellemondt GG van Hooff ML Spruit M

We evaluated the accuracy with which a custom-made acetabular component could be positioned at revision arthroplasty of the hip in patients with a Paprosky type 3 acetabular defect.

A total of 16 patients with a Paprosky type 3 defect underwent revision surgery using a custom-made trabecular titanium implant. There were four men and 12 women with a median age of 67 years (48 to 79). The planned inclination (INCL), anteversion (AV), rotation and centre of rotation (COR) of the implant were compared with the post-operative position using CT scans.

A total of seven implants were malpositioned in one or more parameters: one with respect to INCL, three with respect to AV, four with respect to rotation and five with respect to the COR.

To the best of our knowledge, this is the first study in which CT data acquired for the pre-operative planning of a custom-made revision acetabular implant have been compared with CT data on the post-operative position. The results are encouraging.

Cite this article: Bone Joint J 2015; 97-B:780–5.


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 442 - 448
1 Apr 2014
Feyen H Shimmin AJ

Many different lengths of stem are available for use in primary total hip replacement, and the morphology of the proximal femur varies greatly. The more recently developed shortened stems provide a distribution of stress which closely mimics that of the native femur. Shortening the femoral component potentially comes at the cost of decreased initial stability. Clinical studies on the performance of shortened cemented and cementless stems are promising, although long-term follow-up studies are lacking. We provide an overview of the current literature on the anatomical features of the proximal femur and the biomechanical aspects and clinical outcomes associated with the length of the femoral component in primary hip replacement, and suggest a classification system for the length of femoral stems.

Cite this article: Bone Joint J 2014;96-B:442-8.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 52 - 54
1 Nov 2012
Rodriguez JA Rathod PA

Large femoral heads have been used with increasing frequency over the last decade. The prime reason is likely the effect of large heads on stability. The larger head neck ratio, combined with the increased jump distance of larger heads result in a greater arc of impingement free motion, and greater resistance to dislocation in a provocative position. Multiple studies have demonstrated clear clinical efficacy in diminishing dislocation rates with the use of large femoral heads. With crosslinked polyethylene, wear has been shown to be equivalent between larger and smaller heads. However, the stability advantages of increasing diameter beyond 38 mm have not been clearly demonstrated. More importantly, recent data implicates large heads in the increasing prevalence of groin pain and psoas impingement. There are clear benefits with larger femoral head diameters, but the advantages of diameters beyond 38 mm have not yet been demonstrated clinically.