Advertisement for orthosearch.org.uk
Results 1 - 20 of 86
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 158 - 162
1 Feb 2012
Sternheim A Backstein D Kuzyk PRT Goshua G Berkovich Y Safir O Gross AE

We report the use of porous metal acetabular revision shells in the treatment of contained bone loss. The outcomes of 53 patients with ≤ 50% acetabular bleeding host bone contact were compared with a control group of 49 patients with > 50% to 85% bleeding host bone contact. All patients were treated with the same type of trabecular metal acetabular revision shell. The mean age at revision was 62.4 years (42 to 80) and the mean follow-up of both groups was 72.4 months (60 to 102). Clinical, radiological and functional outcomes were assessed. There were four (7.5%) mechanical failures in the ≤ 50% host bone contact group and no failures in the > 50% host bone contact group (p = 0.068). Out of both groups combined there were four infections (3.9%) and five recurrent dislocations (4.9%) with a stable acetabular component construct that were revised to a constrained liner. Given the complexity of the reconstructive challenge, porous metal revision acetabular shells show acceptable failure rates at five to ten years’ follow-up in the setting of significant contained bone defects. This favourable outcome might be due to the improved initial stability achieved by a high coefficient of friction between the acetabular implant and the host bone, and the high porosity, which affords good bone ingrowth


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 73 - 77
1 Jan 2016
Mäkinen TJ Fichman SG Watts E Kuzyk PRT Safir OA Gross AE

An uncemented hemispherical acetabular component is the mainstay of acetabular revision and gives excellent long-term results.

Occasionally, the degree of acetabular bone loss means that a hemispherical component will be unstable when sited in the correct anatomical location or there is minimal bleeding host bone left for biological fixation. On these occasions an alternative method of reconstruction has to be used.

A major column structural allograft has been shown to restore the deficient bone stock to some degree, but it needs to be off-loaded with a reconstruction cage to prevent collapse of the graft. The use of porous metal augments is a promising method of overcoming some of the problems associated with structural allograft. If the defect is large, the augment needs to be protected by a cage to allow ingrowth to occur. Cup-cage reconstruction is an effective method of treating chronic pelvic discontinuity and large contained or uncontained bone defects.

This paper presents the indications, surgical techniques and outcomes of various methods which use acetabular reconstruction cages for revision total hip arthroplasty.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):73–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 12 | Pages 1555 - 1560
1 Dec 2009
Lingaraj K Teo YH Bergman N

We investigated the early results of modular porous metal components used in 23 acetabular reconstructions associated with major bone loss. The series included seven men and 15 women with a mean age of 67 years (38 to 81), who had undergone a mean of two previous revisions (1 to 7).

Based on Paprosky’s classification, there were 17 type 3A and six type 3B defects. Pelvic discontinuity was noted in one case. Augments were used in 21 hips to support the shell and an acetabular component-cage construct was implanted in one case. At a mean follow-up of 41 months (24 to 62), 22 components remained well fixed. Two patients required rerevision of the liners for prosthetic joint instability. Clinically, the mean Harris Hip Score improved from 43.0 pre-operatively (14 to 86) to 75.7 post-operatively (53 to 100). The mean pre-operative Merle d’Aubigné score was 8.2 (3 to 15) and improved to a mean of 13.7 (11 to 18) post-operatively.

These short-term results suggest that modular porous metal components are a viable option in the reconstruction of Paprosky type 3 acetabular defects. More data are needed to determine whether the system yields greater long-term success than more traditional methods, such as reconstruction cages and structural allografts.


The Bone & Joint Journal
Vol. 95-B, Issue 6 | Pages 777 - 781
1 Jun 2013
Abolghasemian M Drexler M Abdelbary H Sayedi H Backstein D Kuzyk P Safir O Gross AE

In this retrospective study we evaluated the proficiency of shelf autograft in the restoration of bone stock as part of primary total hip replacement (THR) for hip dysplasia, and in the results of revision arthroplasty after failure of the primary arthroplasty. Of 146 dysplastic hips treated by THR and a shelf graft, 43 were revised at an average of 156 months, 34 of which were suitable for this study (seven hips were excluded because of insufficient bone-stock data and two hips were excluded because allograft was used in the primary THR). The acetabular bone stock of the hips was assessed during revision surgery. The mean implant–bone contact was 58% (50% to 70%) at primary THR and 78% (40% to 100%) at the time of the revision, which was a significant improvement (p < 0.001). At primary THR all hips had had a segmental acetabular defect > 30%, whereas only five (15%) had significant segmental bone defects requiring structural support at the time of revision. In 15 hips (44%) no bone graft or metal augments were used during revision.

A total of 30 hips were eligible for the survival study. At a mean follow-up of 103 months (27 to 228), two aseptic and two septic failures had occurred. Kaplan-Meier survival analysis of the revision procedures demonstrated a ten-year survival rate of 93.3% (95% confidence interval (CI) 78 to 107) with clinical or radiological failure as the endpoint. The mean Oxford hip score was 38.7 (26 to 46) for non-revised cases at final follow-up.

Our results indicate that the use of shelf autografts during THR for dysplastic hips restores bone stock, contributing to the favourable survival of the revision arthroplasty should the primary procedure fail.

Cite this article: Bone Joint J 2013;95-B:777–81.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 166 - 172
1 Feb 2013
Abolghasemian M Tangsataporn S Sternheim A Backstein D Safir O Gross AE

Trabecular metal (TM) augments are a relatively new option for reconstructing segmental bone loss during acetabular revision. We studied 34 failed hip replacements in 34 patients that were revised between October 2003 and March 2010 using a TM acetabular shell and one or two augments. The mean age of the patients at the time of surgery was 69.3 years (46 to 86) and the mean follow-up was 64.5 months (27 to 107). In all, 18 patients had a minor column defect, 14 had a major column defect, and two were associated with pelvic discontinuity. The hip centre of rotation was restored in 27 patients (79.4%). The Oxford hip score increased from a mean of 15.4 points (6 to 25) before revision to a mean of 37.7 (29 to 47) at the final follow-up. There were three aseptic loosenings of the construct, two of them in the patients with pelvic discontinuity. One septic loosening also occurred in a patient who had previously had an infected hip replacement. The augments remained stable in two of the failed hips. Whenever there was a loose acetabular component in contact with a stable augment, progressive metal debris shedding was evident on the serial radiographs. Complications included another deep infection treated without revision surgery. Good clinical and radiological results can be expected for bone-deficient acetabula treated by a TM cup and augment, but for pelvic discontinuities this might not be a reliable option.

Cite this article: Bone Joint J 2013;95-B:166–72.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 492 - 499
1 Mar 2021
Garcia-Rey E Saldaña L Garcia-Cimbrelo E

Aims. Bone stock restoration of acetabular bone defects using impaction bone grafting (IBG) in total hip arthroplasty may facilitate future re-revision in the event of failure of the reconstruction. We hypothesized that the acetabular bone defect during re-revision surgery after IBG was smaller than during the previous revision surgery. The clinical and radiological results of re-revisions with repeated use of IBG were also analyzed. Methods. In a series of 382 acetabular revisions using IBG and a cemented component, 45 hips (45 patients) that had failed due to aseptic loosening were re-revised between 1992 and 2016. Acetabular bone defects graded according to Paprosky during the first and the re-revision surgery were compared. Clinical and radiological findings were analyzed over time. Survival analysis was performed using a competing risk analysis. Results. Intraoperative bone defect during the initial revision included 19 Paprosky type IIIA and 29 Paprosky type IIIB hips; at re-revision, seven hips were Paprosky type II, 27 type IIIA and 11 were type IIIB (p = 0.020). The mean preoperative Harris Hip Score was 45.4 (SD 6.4), becoming 80.7 (SD 12.7) at the final follow-up. In all, 12 hips showed radiological migration of the acetabular component, and three required further revision surgery. The nine-year cumulative failure incidence (nine patients at risk) of the acetabular component for further revision surgery was 9.6% (95% confidence interval (CI) 2.9 to 21.0) for any cause, and 7.5% (95% CI 1.9 to 18.5) for aseptic loosening. Hips with a greater hip height had a higher risk for radiological migration (odds ratio 1.09, 95% CI 1.02 to 1.17; p = 0.008). Conclusion. Bone stock restoration can be obtained using IBG in revision hip surgery. This technique is also useful in re-revision surgery; however, a better surgical technique including a closer distance to hip rotation centre could decrease the risk of radiological migration of the acetabular component. A longer follow-up is required to assess potential fixation deterioration. Cite this article: Bone Joint J 2021;103-B(3):492–499


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 368 - 375
1 Mar 2022
Kuijpers MFL Colo E Schmitz MWJL Hannink G Rijnen WHC Schreurs BW

Aims. The aim of this study was to determine the outcome of all primary total hip arthroplasties (THAs) and their subsequent revision procedures in patients aged under 50 years performed at our institution. Methods. All 1,049 primary THAs which were undertaken in 860 patients aged under 50 years between 1988 and 2018 in our tertiary care institution were included. We used cemented implants in both primary and revision surgery. Impaction bone grafting was used in patients with acetabular or femoral bone defects. Kaplan-Meier analyses were used to determine the survival of primary and revision THA with the endpoint of revision for any reason, and of revision for aseptic loosening. Results. The mean age of the patients at the time of the initial THA was 38.6 years (SD 9.3). The mean follow-up of the THA was 8.7 years (2.0 to 31.5). The rate of survival for all primary THAs, acetabular components only, and femoral components only at 20 years’ follow-up with the endpoint of revision for any reason, was 66.7% (95% confidence interval (CI) 60.5 to 72.2), 69.1% (95% CI 63.0 to 74.4), and 83.2% (95% CI 78.1 to 87.3), respectively. A total of 138 revisions were performed. The mean age at the time of revision was 48.2 years (23 to 72). Survival of all subsequent revision procedures, revised acetabular, and revised femoral components at 15 years’ follow-up with the endpoint of revision for any reason was 70.3% (95% CI 56.1 to 80.7), 69.7% (95% CI 54.3 to 80.7), and 76.2% (95% CI 57.8 to 87.4), respectively. A Girdlestone excision arthroplasty was required in six of 860 patients (0.7%). Conclusion. The long-term outcome of cemented primary and subsequent revision THA is promising in these young patients. We showed that our philosophy of using impaction bone grafting in patients with acetabular and femoral defects is a very suitable option when treating young patients. Surgeons should realize that knowledge of the outcome of subsequent revision surgery, which is inevitable in young patients, must be communicated to this group of patients prior to their initial THA. Cite this article: Bone Joint J 2022;104-B(3):368–375


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 299 - 304
1 Feb 2021
Goto E Umeda H Otsubo M Teranishi T

Aims. Various surgical techniques have been described for total hip arthroplasty (THA) in patients with Crowe type III dislocated hips, who have a large acetabular bone defect. The aim of this study was to evaluate the long-term clinical results of patients in whom anatomical reconstruction of the acetabulum was performed using a cemented acetabular component and autologous bone graft from the femoral neck. Methods. A total of 22 patients with Crowe type III dislocated hips underwent 28 THAs using bone graft from the femoral neck between 1979 and 2000. A Charnley cemented acetabular component was placed at the level of the true acetabulum after preparation with bone grafting. All patients were female with a mean age at the time of surgery of 54 years (35 to 68). A total of 18 patients (21 THAs) were followed for a mean of 27.2 years (20 to 33) after the operation. Results. Radiographs immediately after surgery showed a mean vertical distance from the centre of the hip to the teardrop line of 21.5 mm (SD 3.3; 14.5 to 30.7) and a mean cover of the acetabular component by bone graft of 46% (SD 6%; 32% to 60%). All bone grafts united without collapse, and only three acetabular components loosened. The rate of survival of the acetabular component with mechanical loosening or revision as the endpoint was 86.4% at 25 years after surgery. Conclusion. The technique of using autologous bone graft from the femoral neck and placing a cemented acetabular component in the true acetabulum can provide good long-term outcomes in patients with Crowe type III dislocated hips. Cite this article: Bone Joint J 2021;103-B(2):299–304


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1247 - 1253
1 Jul 2021
Slullitel PA Oñativia JI Zanotti G Comba F Piccaluga F Buttaro MA

Aims. There is a paucity of long-term studies analyzing risk factors for failure after single-stage revision for periprosthetic joint infection (PJI) following total hip arthroplasty (THA). We report the mid- to long-term septic and non-septic failure rate of single-stage revision for PJI after THA. Methods. We retrospectively reviewed 88 cases which met the Musculoskeletal Infection Society (MSIS) criteria for PJI. Mean follow-up was seven years (1 to 14). Septic failure was diagnosed with a Delphi-based consensus definition. Any reoperation for mechanical causes in the absence of evidence of infection was considered as non-septic failure. A competing risk regression model was used to evaluate factors associated with septic and non-septic failures. A Kaplan-Meier estimate was used to analyze mortality. Results. The cumulative incidence of septic failure was 8% (95% confidence interval (CI) 3.5 to 15) at one year, 13.8% (95% CI 7.6 to 22) at two years, and 19.7% (95% CI 12 to 28.6) at five and ten years of follow-up. A femoral bone defect worse than Paprosky IIIA (hazard ratio (HR) 13.58 (95% CI 4.86 to 37.93); p < 0.001) and obesity (BMI ≥ 30 kg/m. 2. ; HR 3.88 (95% CI 1.49 to 10.09); p = 0.005) were significantly associated with septic failure. Instability and periprosthetic fracture were the most common reasons for mechanical failure (5.7% and 4.5%, respectively). The cumulative incidence of aseptic failure was 2% (95% CI 0.4 to 7) at two years, 9% (95% CI 4 to 17) at five years, and 12% (95% CI 5 to 22) at ten years. A previous revision to treat PJI was significantly associated with non-septic failure (HR 9.93 (95% CI 1.77 to 55.46); p = 0.009). At the five-year timepoint, 93% of the patients were alive (95% CI 84% to 96%), which fell to 86% (95% CI 75% to 92%) at ten-year follow-up. Conclusion. Massive femoral bone loss was associated with greater chances of developing a further septic failure. All septic failures occurred within the first five years following the one-stage exchange. Surgeons should be aware of instability and periprosthetic fracture being potential causes of further aseptic revision surgery. Cite this article: Bone Joint J 2021;103-B(7):1247–1253


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1478 - 1484
1 Nov 2014
Garcia-Rey E Cruz-Pardos A Madero R

A total of 31 patients, (20 women, 11 men; mean age 62.5 years old; 23 to 81), who underwent conversion of a Girdlestone resection-arthroplasty (RA) to a total hip replacement (THR) were compared with 93 patients, (60 women, 33 men; mean age 63.4 years old; 20 to 89), who had revision THR surgery for aseptic loosening in a retrospective matched case-control study. Age, gender and the extent of the pre-operative bone defect were similar in all patients. Mean follow-up was 9.3 years (5 to 18). Pre-operative function and range of movement were better in the control group (p = 0.01 and 0.003, respectively) and pre-operative leg length discrepancy (LLD) was greater in the RA group (p < 0.001). The post-operative clinical outcome was similar in both groups except for mean post-operative LLD, which was greater in the study group (p = 0.003). There was a significant interaction effect for LLD in the study group (p < 0.001). A two-way analysis of variance showed that clinical outcome depended on patient age (patients older than 70 years old had worse pre-operative pain, p = 0.017) or bone defect (patients with a large acetabular bone defect had higher LLD, p = 0.006, worse post-operative function p = 0.009 and range of movement, p = 0.005), irrespective of the group. . Despite major acetabular and femoral bone defects requiring complex surgical reconstruction techniques, THR after RA shows a clinical outcome similar to those obtained in aseptic revision surgery for hips with similar sized bone defects. Cite this article: Bone Joint J 2014;96-B:1478–84


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 151 - 157
1 Feb 2024
Dreyer L Bader C Flörkemeier T Wagner M

Aims

The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection.

Methods

We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 903 - 908
1 Jul 2018
Eachempati KK Malhotra R Pichai S Reddy AVG Podhili Subramani AK Gautam D Bollavaram VR Sheth NP

Aims. The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky IIIA and IIIB defects. Patients and Methods. A retrospective study was conducted at four centres between August 2008 and January 2015. Patients treated with TM augments and TM shell for a Paprosky grade IIIA or IIIB defect, in the absence of pelvic discontinuity, and who underwent revision hip arthroplasty with the use of TM augments were included in the study. A total of 41 patients with minimum follow-up of two years were included and evaluated using intention-to-treat analysis. Results. There were 36 (87.8%) patients with a Paprosky IIIA defect and five (12.2%) patients with a Paprosky IIIB defect. The mean age was 56.7 years (28 to 94). There were 21 (51.2%) women and 20 (48.8%) men. The mean follow-up was 39.4 months (12 to 96). One (2%) patient died after eight years. No failures were noted in the series. The mean survivorship was 100% at the time of latest follow-up. Conclusion. The results of this multicentre study showed encouraging short- and mid-term results for the use of TM augments in the management of Paprosky grade IIIA and IIIB defects. Cite this article: Bone Joint J 2018;100-B:903–8


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 319 - 324
1 Mar 2014
Abolghasemian M Sadeghi Naini M Tangsataporn S Lee P Backstein D Safir O Kuzyk P Gross AE

We retrospectively reviewed 44 consecutive patients (50 hips) who underwent acetabular re-revision after a failed previous revision that had been performed using structural or morcellised allograft bone, with a cage or ring for uncontained defects. Of the 50 previous revisions, 41 cages and nine rings were used with allografts for 14 minor-column and 36 major-column defects. We routinely assessed the size of the acetabular bone defect at the time of revision and re-revision surgery. This allowed us to assess whether host bone stock was restored. We also assessed the outcome of re-revision surgery in these circumstances by means of radiological characteristics, rates of failure and modes of failure. We subsequently investigated the factors that may affect the potential for the restoration of bone stock and the durability of the re-revision reconstruction using multivariate analysis. At the time of re-revision, there were ten host acetabula with no significant defects, 14 with contained defects, nine with minor-column, seven with major-column defects and ten with pelvic discontinuity. When bone defects at re-revision were compared with those at the previous revision, there was restoration of bone stock in 31 hips, deterioration of bone stock in nine and remained unchanged in ten. This was a significant improvement (p <  0.001). Morselised allografting at the index revision was not associated with the restoration of bone stock. . In 17 hips (34%), re-revision was possible using a simple acetabular component without allograft, augments, rings or cages. There were 47 patients with a mean follow-up of 70 months (6 to 146) available for survival analysis. Within this group, the successful cases had a minimum follow-up of two years after re-revision. There were 22 clinical or radiological failures (46.7%), 18 of which were due to aseptic loosening. The five and ten year Kaplan–Meier survival rate was 75% (95% CI, 60 to 86) and 56% (95% CI, 40 to 70) respectively with aseptic loosening as the endpoint. The rate of aseptic loosening was higher for hips with pelvic discontinuity (p = 0.049) and less when the allograft had been in place for longer periods (p = 0.040). . The use of a cage or ring over structural allograft bone for massive uncontained defects in acetabular revision can restore host bone stock and facilitate subsequent re-revision surgery to a certain extent. Cite this article: Bone Joint J 2014;96-B:319–24


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1442 - 1448
1 Nov 2018
Hipfl C Janz V Löchel J Perka C Wassilew GI

Aims. Severe acetabular bone loss and pelvic discontinuity (PD) present particular challenges in revision total hip arthroplasty. To deal with such complex situations, cup-cage reconstruction has emerged as an option for treating this situation. We aimed to examine our success in using this technique for these anatomical problems. Patients and Methods. We undertook a retrospective, single-centre series of 35 hips in 34 patients (seven male, 27 female) treated with a cup-cage construct using a trabecular metal shell in conjunction with a titanium cage, for severe acetabular bone loss between 2011 and 2015. The mean age at the time of surgery was 70 years (42 to 85) and all patients had an acetabular defect graded as Paprosky Type 2C through to 3B, with 24 hips (69%) having PD. The mean follow-up was 47 months (25 to 84). Results. The cumulative five-year survivorship of the implant with revision for any cause was 89% (95% confidence interval (CI) 72 to 96) with eight hips at risk. No revision was required for aseptic loosening; however, one patient with one hip (3%) required removal of the ischial flange of the cage due to sciatic nerve irritation. Two patients (6%; two hips) suffered from hip dislocation, whereas one patient (one hip) required revision surgery with cement fixation of a dual-mobility acetababular component into a well-fixed cup-cage construct. Two patients (6%; two hips) developed periprosthetic infection. One patient was successfully controlled with a two-stage revision surgery, while the other patient underwent excision arthroplasty due to severe medical comorbidities. For the whole series, the Harris Hip Score significantly improved from a mean of 30 (15 to 51) preoperatively to 71 (40 to 89) at the latest follow-up (p < 0.001). Conclusion. Our findings suggest that cup-cage reconstruction is a viable option for major segmental bone defects involving the posterior column and PD. It allows adequate restoration of the acetabulum centre with generally good stability and satisfactory postoperative function. Instability and infection remain drawbacks in these challenging revision cases. Cite this article: Bone Joint J 2018;100-B:1442–48


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 296 - 300
1 Mar 2007
van Haaren EH Heyligers IC Alexander FGM Wuisman PIJM

We reviewed the results of 71 revisions of the acetabular component in total hip replacement, using impaction of bone allograft. The mean follow-up was 7.2 years (1.6 to 9.7). All patients were assessed according to the American Academy of Orthopedic Surgeons (AAOS) classification of bone loss, the amount of bone graft required, thickness of the graft layer, signs of graft incorporation and use of augmentation. A total of 20 acetabular components required re-revision for aseptic loosening, giving an overall survival of 72% (95% CI, 54.4 to 80.5). Of these failures, 14 (70%) had an AAOS type III or IV bone defect. In the failed group, poor radiological and histological graft incorporation was seen. These results suggest that impaction allografting in acetabular revision with severe bone defects may have poorer results than have previously been reported


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims

To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time.

Methods

We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.


Aims

Revision total hip arthroplasty in patients with Vancouver type B3 fractures with Paprosky type IIIA, IIIB, and IV femoral defects are difficult to treat. One option for Paprovsky type IIIB and IV defects involves modular cementless, tapered, revision femoral components in conjunction with distal interlocking screws. The aim of this study was to analyze the rate of reoperations and complications and union of the fracture, subsidence of the stem, mortality, and the clinical outcomes in these patients.

Methods

A total of 46 femoral components in patients with Vancouver B3 fractures (23 with Paprosky type IIIA, 19 with type IIIB, and four with type IV defects) in 46 patients were revised with a transfemoral approach using a modular, tapered, cementless revision Revitan curved femoral component with distal cone-in-cone fixation and prospectively followed for a mean of 48.8 months (SD 23.9; 24 to 112). The mean age of the patients was 80.4 years (66 to 100). Additional distal interlocking was also used in 23 fractures in which distal cone-in-cone fixation in the isthmus was < 3 cm.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1110 - 1117
12 Oct 2022
Wessling M Gebert C Hakenes T Dudda M Hardes J Frieler S Jeys LM Hanusrichter Y

Aims

The aim of this study was to examine the implant accuracy of custom-made partial pelvis replacements (PPRs) in revision total hip arthroplasty (rTHA). Custom-made implants offer an option to achieve a reconstruction in cases with severe acetabular bone loss. By analyzing implant deviation in CT and radiograph imaging and correlating early clinical complications, we aimed to optimize the usage of custom-made implants.

Methods

A consecutive series of 45 (2014 to 2019) PPRs for Paprosky III defects at rTHA were analyzed comparing the preoperative planning CT scans used to manufacture the implants with postoperative CT scans and radiographs. The anteversion (AV), inclination (IC), deviation from the preoperatively planned implant position, and deviation of the centre of rotation (COR) were explored. Early postoperative complications were recorded, and factors for malpositioning were sought. The mean follow-up was 30 months (SD 19; 6 to 74), with four patients lost to follow-up.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 26 - 31
1 Jan 2007
Kawanabe K Akiyama H Onishi E Nakamura T

We retrospectively evaluated 42 hips which had undergone acetabular reconstruction using the Kerboull acetabular reinforcement device between September 1994 and December 1998. We used autogenous bone chips from the ilium and ceramic particle morsellised grafts, even in large acetabular bone defects, in the early stages of the study. Thereafter, femoral head allograft was used as bulk graft in patients with large acetabular defects. Ceramic blocks and the patients’ contralateral femoral head were also used as bulk graft. The mean follow-up period was 8.7 years (4.3 to 12). Survivorship analysis was performed using radiological failure of the acetabular component, irrespective of whether it was revised, or not, as the end-point. The survival rate of the morsellised graft group (25 hips) and the bulk graft group (17 hips) at ten years was 53% (95% confidence interval (CI) 42.5% to 63.5%) and 82% (95% CI 72.4% to 91.6%), respectively. The mid-term results of revision total hip replacement with the Kerboull device were better when bulk graft was used in any size of bone defect


The Bone & Joint Journal
Vol. 104-B, Issue 7 | Pages 859 - 866
1 Jul 2022
Innocenti M Smulders K Willems JH Goosen JHM van Hellemondt G

Aims

The aim of this study was to explore the relationship between reason for revision total hip arthroplasty (rTHA) and outcomes in terms of patient-reported outcome measures (PROMs).

Methods

We reviewed a prospective cohort of 647 patients undergoing full or partial rTHA at a single high-volume centre with a minimum of two years’ follow-up. The reasons for revision were classified as: infection; aseptic loosening; dislocation; structural failure; and painful THA for other reasons. PROMs (modified Oxford Hip Score (mOHS), EuroQol five-dimension three-level health questionnaire (EQ-5D-3L) score, and visual analogue scales for pain during rest and activity), complication rates, and failure rates were compared among the groups.