Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:

Aims

The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery.

Methods

A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model.


The Bone & Joint Journal
Vol. 98-B, Issue 10_Supple_B | Pages 16 - 21
1 Oct 2016
Jones GG Kotti M Wiik AV Collins R Brevadt MJ Strachan RK Cobb JP

Aims

To compare the gait of unicompartmental knee arthroplasty (UKA) and total knee arthroplasty (TKA) patients with healthy controls, using a machine-learning approach.

Patients and Methods

145 participants (121 healthy controls, 12 patients with cruciate-retaining TKA, and 12 with mobile-bearing medial UKA) were recruited. The TKA and UKA patients were a minimum of 12 months post-operative, and matched for pattern and severity of arthrosis, age, and body mass index.

Participants walked on an instrumented treadmill until their maximum walking speed was reached. Temporospatial gait parameters, and vertical ground reaction force data, were captured at each speed. Oxford knee scores (OKS) were also collected. An ensemble of trees algorithm was used to analyse the data: 27 gait variables were used to train classification trees for each speed, with a binary output prediction of whether these variables were derived from a UKA or TKA patient. Healthy control gait data was then tested by the decision trees at each speed and a final classification (UKA or TKA) reached for each subject in a majority voting manner over all gait cycles and speeds. Top walking speed was also recorded.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 348 - 353
1 Mar 2013
Metcalfe AJ Stewart C Postans N Dodds AL Holt CA Roberts AP

The aim of this study was to examine the loading of the other joints of the lower limb in patients with unilateral osteoarthritis (OA) of the knee. We recruited 20 patients with no other symptoms or deformity in the lower limbs from a consecutive cohort of patients awaiting knee replacement. Gait analysis and electromyographic recordings were performed to determine moments at both knees and hips, and contraction patterns in the medial and lateral quadriceps and hamstrings bilaterally. The speed of gait was reduced in the group with OA compared with the controls, but there were only minor differences in stance times between the limbs. Patients with OA of the knee had significant increases in adduction moment impulse at both knees and the contralateral hip (adjusted p-values: affected knee: p < 0.01, unaffected knee p = 0.048, contralateral hip p = 0.03), and significantly increased muscular co-contraction bilaterally compared with controls (all comparisons for co-contraction, p < 0.01).

The other major weight-bearing joints are at risk from abnormal biomechanics in patients with unilateral OA of the knee.

Cite this article: Bone Joint J 2013;95-B:348–53.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11_Supple_A | Pages 112 - 115
1 Nov 2012
Su EP

Fixed flexion deformities are common in osteoarthritic knees that are indicated for total knee arthroplasty. The lack of full extension at the knee results in a greater force of quadriceps contracture and energy expenditure. It also results in slower walking velocity and abnormal gait mechanics, overloading the contralateral limb. Residual flexion contractures after TKA have been associated with poorer functional scores and outcomes.

Although some flexion contractures may resolve with time after surgery, a substantial percentage will become permanent. Therefore, it is essential to correct fixed flexion deformities at the time of TKA, and be vigilant in the post-operative course to maintain the correction.

Surgical techniques to address pre-operative flexion contractures include: adequate bone resection, ligament releases, removal of posterior osteophytes, and posterior capsular releases. Post-operatively, extension can be maintained with focused physiotherapy, a specially modified continuous passive motion machine, a contralateral heel lift, and splinting.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1178 - 1182
1 Sep 2009
Hakki S Coleman S Saleh K Bilotta VJ Hakki A

The requirement for release of collateral ligaments to achieve a stable, balanced total knee replacement has been reported to arise in about 50% to 100% of procedures. This wide range reflects a lack of standardised quantitative indicators to determine the necessity for a release. Using recent advances in computerised navigation, we describe two navigational predictors which provide quantitative measures that can be used to identify the need for release. The first was the ability to restore the mechanical axis before any bone resection was performed and the second was the discrepancy in the measured medial and lateral joint spaces after the tibial osteotomy, but before any femoral resection.

These predictors showed a significant association with the need for collateral ligament release (p < 0.001). The first predictor using the knee stress test in extension showed a sensitivity of 100% and a specificity of 98% and the second, the difference between medial and lateral gaps in millimetres, a sensitivity of 83% and a specificity of 95%. The use of the two navigational predictors meant that only ten of the 93 patients required collateral ligament release to achieve a stable, neutral knee.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 3 | Pages 324 - 330
1 Mar 2006
Scarvell JM Smith PN Refshauge KM Galloway HR Woods KR

This prospective study used magnetic resonance imaging to record sagittal plane tibiofemoral kinematics before and after anterior cruciate ligament reconstruction using autologous hamstring graft. Twenty patients with anterior cruciate ligament injuries, performed a closed-chain leg-press while relaxed and against a 150 N load. The tibiofemoral contact patterns between 0° to 90° of knee flexion were recorded by magnetic resonance scans. All measurements were performed pre-operatively and repeated at 12 weeks and two years.

Following reconstruction there was a mean passive anterior laxity of 2.1 mm (sd 2.3), as measured using a KT 1000 arthrometer, and the mean Cincinnati score was 90 (sd 11) of 100. Pre-operatively, the medial and lateral contact patterns of the injured knees were located posteriorly on the tibial plateau compared with the healthy contralateral knees (p = 0.014), but were no longer different at 12 weeks (p = 0.117) or two years postoperatively (p = 0.909). However, both reconstructed and healthy contralateral knees showed altered kinematics over time. At two years, the contact pattern showed less posterior translation of the lateral femoral condyle during flexion (p < 0.01).