Advertisement for orthosearch.org.uk
Results 1 - 20 of 371
Results per page:
The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1774 - 1782
1 Dec 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims. The aim of this study was to determine if uncemented acetabular polyethylene (PE) liner geometry, and lip size, influenced the risk of revision for instability or loosening. Methods. A total of 202,511 primary total hip arthroplasties (THAs) with uncemented acetabular components were identified from the National Joint Registry (NJR) dataset between 2003 and 2017. The effect of liner geometry on the risk of revision for instability or loosening was investigated using competing risk regression analyses adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, surgeon grade, surgical approach, head size, and polyethylene crosslinking. Stratified analyses by surgical approach were performed, including pairwise comparisons of liner geometries. Results. The distribution of liner geometries were neutral (39.4%; 79,822), 10° (34.5%; 69,894), 15° (21.6%; 43,722), offset reorientating (2.8%; 5705), offset neutral (0.9%; 1,767), and 20° (0.8%; 1,601). There were 690 (0.34%) revisions for instability. Compared to neutral liners, the adjusted subhazard ratios of revision for instability were: 10°, 0.64 (p < 0.001); 15°, 0.48 (p < 0.001); and offset reorientating, 1.6 (p = 0.010). No association was found with other geometries. 10° and 15° liners had a time-dependent lower risk of revision for instability within the first 1.2 years. In posterior approaches, 10° and 15° liners had a lower risk of revision for instability, with no significant difference between them. The protective effect of lipped over neutral liners was not observed in laterally approached THAs. There were 604 (0.3%) revisions for loosening, but no association between liner geometry and revision for loosening was found. Conclusion. This registry-based study confirms a lower risk of revision for instability in posterior approach THAs with 10° or 15° lipped liners compared to neutral liners, but no significant difference between these lip sizes. A higher revision risk is seen with offset reorientating liners. The benefit of lipped geometries against revision for instability was not seen in laterally approached THAs. Liner geometry does not seem to influence the risk of revision for loosening. Cite this article: Bone Joint J 2021;103-B(12):1774–1782


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1669 - 1677
1 Nov 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims. To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening. Methods. The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death. Results. The distribution of acetabular component geometries was: LPW 81.2%; hooded 18.7%; and offset reorientating 0.1%. There were 3,313 (1.5%) revision THAs performed, of which 815 (0.4%) were for instability and 838 (0.4%) were for loosening. Compared to the LPW group, the adjusted subhazard ratio of revision for instability in the hooded group was 2.31 (p < 0.001) and 4.12 (p = 0.047) in the offset reorientating group. Likewise, the subhazard ratio of revision for loosening was 2.65 (p < 0.001) in the hooded group and 13.61 (p < 0.001) in the offset reorientating group. A time-varying subhazard ratio of revision for instability (hooded vs LPW) was found, being greatest within the first three months. Conclusion. This registry-based study confirms a significantly higher risk of revision after cemented THA for instability and for loosening when a hooded or offset reorientating acetabular component is used, compared to a LPW component. Further research is required to clarify if certain patients benefit from the use of hooded or offset reorientating components, but we recommend caution when using such components in routine clinical practice. Cite this article: Bone Joint J 2021;103-B(11):1669–1677


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 940 - 945
1 Jul 2005
Pandit H Ward T Hollinghurst D Beard DJ Gill HS Thomas NP Murray DW

Abnormal sagittal kinematics after total knee replacement (TKR) can adversely affect functional outcome. Two important determinants of knee kinematics are component geometry and the presence or absence of a posterior-stabilising mechanism (cam-post). We investigated the influence of these variables by comparing the kinematics of a TKR with a polyradial femur with a single radius design, both with and without a cam-post mechanism. We assessed 55 patients, subdivided into four groups, who had undergone a TKR one year earlier by using an established fluoroscopy protocol in order to examine their kinematics in vivo. The kinematic profile was obtained by measuring the patellar tendon angle through the functional knee flexion range (0° to 90°) and the results compared with 14 normal knees. All designs of TKR had abnormal sagittal kinematics compared with the normal knee. There was a significant (p < 0.05) difference between those of the two TKRs near to full extension. The presence of the cam-post mechanism did not influence the kinematics for either TKR design. These differences suggest that surface geometry is a stronger determinant of kinematics than the presence or absence of a cam-post mechanism for these two designs. This may be because the cam-post mechanism is ineffective


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 857 - 865
1 Sep 1997
Boileau P Walch G

We have studied the three-dimensional geometry of the proximal humerus on human cadaver specimens using a digitised measuring device linked to a computer. Our findings demonstrated the variable shape of the proximal humerus as well as its variable dimensions. The articular surface, which is part of a sphere varies individually in its orientation as regards inclination and retroversion, and it has variable medial and posterior offsets. These variations cannot be accommodated by the designs of most contemporary humeral components. Although good clinical results can be achieved with current modular and non-modular components their relatively fixed geometry prevents truly anatomical restoration in many cases. To try to restore the original three-dimensional geometry of the proximal humerus, we have developed a new type of humeral component which is modular and adaptable to the individual anatomy. Such adaptability allows correct positioning of the prosthetic head in relation to an individual anatomical neck, after removal of the marginal osteophytes. The design of this third-generation prosthesis respects the four geometrical variations which have been demonstrated in the present study. These are inclination, retroversion, medial offset and posterior offset


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 595 - 601
1 Apr 2010
Kafchitsas K Kokkinakis M Habermann B Rauschmann M

In a study on ten fresh human cadavers we examined the change in the height of the intervertebral disc space, the angle of lordosis and the geometry of the facet joints after insertion of intervertebral total disc replacements. SB III Charité prostheses were inserted at L3-4, L4-5, and L5-S1. The changes studied were measured using computer navigation sofware applied to CT scans before and after instrumentation. After disc replacement the mean lumbar disc height was doubled (p < 0.001). The mean angle of lordosis and the facet joint space increased by a statistically significant extent (p < 0.005 and p = 0.006, respectively). By contrast, the mean facet joint overlap was significantly reduced (p < 0.001). Our study indicates that the increase in the intervertebral disc height after disc replacement changes the geometry at the facet joints. This may have clinical relevance


The Bone & Joint Journal
Vol. 105-B, Issue 10 | Pages 1123 - 1130
1 Oct 2023
Donnan M Anderson N Hoq M Donnan L

Aims

The aim of this study was to investigate the agreement in interpretation of the quality of the paediatric hip ultrasound examination, the reliability of geometric and morphological assessment, and the relationship between these measurements.

Methods

Four investigators evaluated 60 hip ultrasounds and assessed their quality based the standard plane of Graf et al. They measured geometric parameters, described the morphology of the hip, and assigned the Graf grade of dysplasia. They analyzed one self-selected image and one randomly selected image from the ultrasound series, and repeated the process four weeks later. The intra- and interobserver agreement, and correlations between various parameters were analyzed.


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 3 | Pages 452 - 458
1 May 1999
Stäubli H Dürrenmatt U Porcellini B Rauschning W

We studied the anatomy of the patellofemoral joint in the axial plane on cryosections from a cadaver knee and on MR arthrotomograms from 30 patients. The cryosections revealed differences in the geometry and anatomy of the surface of the articular cartilage and corresponding subchondral osseous contours of the patellofemoral joint. On the MR arthrotomograms the surface geometry of the cartilage matched the osseous contour of the patella in only four of the 30 knees. The articular cartilaginous surface of the intercondylar sulcus and corresponding osseous contour of the femoral trochlea matched in only seven knees. Since MR arthrotomography can distinguish between the surface geometry of the articular cartilage and subchondral osseous anatomy of the patellofemoral joint, it allows the surgeon and the radiologist to appraise the true articulating surfaces. We therefore recommend MR arthrotomography as the imaging technique of choice


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 921 - 927
1 Jul 2005
Glyn-Jones S Gill HS Beard DJ McLardy-Smith P Murray DW

Polished, tapered stems are now widely used for cemented total hip replacement and many such designs have been introduced. However, a change in stem geometry may have a profound influence on stability. Stems with a wide, rectangular proximal section may be more stable than those which are narrower proximally. We examined the influence of proximal geometry on stability by comparing the two-year migration of the Exeter stem with a more recent design, the CPS-Plus, which has a wider shoulder and a more rectangular cross-section. The hypothesis was that these design features would increase rotational stability. Both stems subsided approximately 1 mm relative to the femur during the first two years after implantation. The Exeter stem was found to rotate into valgus (mean 0.2°, . sd. 0.42°) and internally rotate (mean 1.28°, . sd. 0.99°). The CPS-Plus showed no significant valgus rotation (mean 0.2°, . sd. 0.42°) or internal rotation (mean −0.03°, . sd. 0.75°). A wider, more rectangular cross-section improves rotational stability and may have a better long-term outcome


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1364 - 1368
1 Oct 2005
Brinkman J Schwering PJA Blankevoort L Koolos JG Luites J Wymenga AB

We have quantitatively documented the insertion geometry of the main stabilising structures of the posterolateral corner of the knee in 34 human cadavers. The lateral collateral ligament inserted posterior (4.6 mm, . sd. 2) and proximal (1.3 mm, . sd. 3.6) to the lateral epicondyle of the femur and posterior (8.1 mm, . sd. 3.2) to the anterior point of the head of the fibula. On the femur, the popliteus tendon inserted distally (11 mm, . sd. 0.8) and either anterior or posterior (mean 0.84 mm anterior, . sd. 4) to the lateral collateral ligament. The popliteofibular ligament inserted distal (1.3 mm, . sd. 1.2) and anterior (0.5 mm, . sd. 2.0) to the tip of the styloid process of the fibula. The ligaments had a consistent pattern of insertion and, despite the variation between specimens, the standard deviations were less than the typical size of drill hole used in reconstruction of the posterolateral corner. The data provided in this study can be used in the anatomical repair and reconstruction of this region of the knee


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 817 - 825
1 Aug 2024
Borukhov I Ismailidis P Esposito CI LiArno S Lyon J McEwen PJ

Aims

This study aimed to evaluate if total knee arthroplasty (TKA) femoral components aligned in either mechanical alignment (MA) or kinematic alignment (KA) are more biomimetic concerning trochlear sulcus orientation and restoration of trochlear height.

Methods

Bone surfaces from 1,012 CT scans of non-arthritic femora were segmented using a modelling and analytics system. TKA femoral components (Triathlon; Stryker) were virtually implanted in both MA and KA. Trochlear sulcus orientation was assessed by measuring the distal trochlear sulcus angle (DTSA) in native femora and in KA and MA prosthetic femoral components. Trochlear anatomy restoration was evaluated by measuring the differences in medial, lateral, and sulcus trochlear height between native femora and KA and MA prosthetic femoral components.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1372 - 1379
1 Oct 2008
Robin J Graham HK Selber P Dobson F Smith K Baker R

There is much debate about the nature and extent of deformities in the proximal femur in children with cerebral palsy. Most authorities accept that increased femoral anteversion is common, but its incidence, severity and clinical significance are less clear. Coxa valga is more controversial and many authorities state that it is a radiological artefact rather than a true deformity.

We measured femoral anteversion clinically and the neck-shaft angle radiologically in 292 children with cerebral palsy. This represented 78% of a large, population-based cohort of children with cerebral palsy which included all motor types, topographical distributions and functional levels as determined by the gross motor function classification system.

The mean femoral neck anteversion was 36.5° (11° to 67.5°) and the mean neck-shaft angle 147.5° (130° to 178°). These were both increased compared with values in normally developing children. The mean femoral neck anteversion was 30.4° (11° to 50°) at gross motor function classification system level I, 35.5° (8° to 65°) at level II and then plateaued at approximately 40.0° (25° to 67.5°) at levels III, IV and V. The mean neck-shaft angle increased in a step-wise manner from 135.9° (130° to 145°) at gross motor function classification system level I to 163.0° (151° to 178°) at level V. The migration percentage increased in a similar pattern and was closely related to femoral deformity.

Based on these findings we believe that displacement of the hip in patients with cerebral palsy can be explained mainly by the abnormal shape of the proximal femur, as a result of delayed walking, limited walking or inability to walk. This has clinical implications for the management of hip displacement in children with cerebral palsy.


The Bone & Joint Journal
Vol. 96-B, Issue 12 | Pages 1623 - 1630
1 Dec 2014
Monk AP Choji K O’Connor JJ Goodfellow† JW Murray DW

We scanned 25 left knees in healthy human subjects using MRI. Multiplanar reconstruction software was used to take measurements of the inferior and posterior facets of the femoral condyles and the trochlea.

A ‘basic circle’ can be defined which, in the sagittal plane, fits the posterior and inferior facets of the lateral condyle, the posterior facet of the medial condyle and the floor of the groove of the trochlea. It also approximately fits both condyles in the coronal plane (inferior facets) and the axial plane (posterior facets). The circle fitting the inferior facet of the medial condyle in the sagittal plane was consistently 35% larger than the other circles and was termed the ‘medial inferior circle’. There were strong correlations between the radii of the circles, the relative positions of the centres of the condyles, the width of the condyles, the total knee width and skeletal measurements including height. There was poor correlation between the radii of the circles and the position of the trochlea relative to the condyles.

In summary, the condyles are approximately spherical except for the inferior facet medially, which has a larger radius in the sagittal plane. The size and position of the condyles are consistent and change with the size of the person. However, the position of the trochlea is variable even though its radius is similar to that of the condyles. This information has implications for understanding anterior knee pain and for the design of knee replacements.

Cite this article: Bone Joint J 2014;96-B:1623–30.


The Journal of Bone & Joint Surgery British Volume
Vol. 73-B, Issue 4 | Pages 647 - 650
1 Jul 1991
Roberts S Foley A Swallow H Wallace W Coughlan D

The articular surface of the humeral head is usually described as facing posteromedially, making an angle of between 16 degrees and 35 degrees with the transepicondylar plane. At hemiarthroplasty the articular surface also appears to be offset posteriorly with respect to the humeral shaft. Coracoid impingement may occur if this offset is not accommodated. An analysis was made of 29 cadaveric humeri using an industrial co-ordinate measuring machine. The position of the centre of the head was defined with respect to the humeral shaft and transepicondylar plane. The humeral articular surface was found to be retroverted by 21.4 degrees and its centre offset posteriorly by 4.7 mm. Previous interpretation of retroversion did not take into account the posterior displacement, and this may be of importance in improving future prosthetic design.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1240 - 1246
1 Sep 2011
Melis B DeFranco M Lädermann A Molé D Favard L Nérot C Maynou C Walch G

Radiological changes and differences between cemented and uncemented components of Grammont reverse shoulder arthroplasties (DePuy) were analysed at a mean follow-up of 9.6 years (8 to 12). Of 122 reverse shoulder arthroplasties implanted in five shoulder centres between 1993 and 2000, a total of 68 (65 patients) were available for study. The indications for reversed shoulder arthroplasty were cuff tear arthropathy in 48 shoulders, revision of shoulder prostheses of various types in 11 and massive cuff tear in nine. The development of scapular notching, bony scapular spur formation, heterotopic ossification, glenoid and humeral radiolucencies, stem subsidence, radiological signs of stress shielding and resorption of the tuberosities were assessed on standardised true anteroposterior and axillary radiographs.

A scapular notch was observed in 60 shoulders (88%) and was associated with the superolateral approach (p = 0.009). Glenoid radiolucency was present in 11 (16%), bony scapular spur and/or ossifications in 51 (75%), and subsidence of the stem and humeral radiolucency in more than three zones were present in three (8.8%) and in four (11.8%) of 34 cemented components, respectively, and in one (2.9%) and two (5.9%) of 34 uncemented components, respectively. Radiological signs of stress shielding were significantly more frequent with uncemented components (p < 0.001), as was resorption of the greater (p < 0.001) and lesser tuberosities (p = 0.009).


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 600 - 606
1 May 2002
Lietman SA Miyamoto S Brown PR Inoue N Reddi AH

Damage to articular cartilage is a common injury, for which there is no effective treatment. Our aims were to investigate the temporal sequence of the repair of articular cartilage and to define a critical-size defect.

Full-thickness defects were made in adult male New Zealand white rabbits. The diameter (1 to 4 mm) of the defects was varied in order to determine the effect that the size and depth of the defect had on its healing. The defects were made in the femoral groove of the knee with one defect per knee and eight knees per group. The tissues were fixed in formalin at days 3, 7, 14, 21, 28, 42, 84 and 126 after operation and the sections stained with Toluidine Blue. These were then examined and evaluated for several parameters including the degree of metachromasia and the amount of subchondral bone which had reformed in the defect.

The defects had a characteristic pattern of healing which differed at different days and for different sizes of defect. Specifically, the defects of 1 mm first peaked in terms of metachromasia at day 21, those of 2 mm at day 28, followed by defects of 3 mm and 4 mm. The healing of the subchondral bone was slowest in defects of 1 mm.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 89 - 97
1 May 2024
Scholz J Perka C Hipfl C

Aims. There is little information in the literature about the use of dual-mobility (DM) bearings in preventing re-dislocation in revision total hip arthroplasty (THA). The aim of this study was to compare the use of DM bearings, standard bearings, and constrained liners in revision THA for recurrent dislocation, and to identify risk factors for re-dislocation. Methods. We reviewed 86 consecutive revision THAs performed for dislocation between August 2012 and July 2019. A total of 38 revisions (44.2%) involved a DM bearing, while 39 (45.3%) and nine (10.5%) involved a standard bearing and a constrained liner, respectively. Rates of re-dislocation, re-revision for dislocation, and overall re-revision were compared. Radiographs were assessed for the positioning of the acetabular component, the restoration of the centre of rotation, leg length, and offset. Risk factors for re-dislocation were determined by Cox regression analysis. The modified Harris Hip Scores (mHHSs) were recorded. The mean age of the patients at the time of revision was 70 years (43 to 88); 54 were female (62.8%). The mean follow-up was 5.0 years (2.0 to 8.75). Results. DM bearings were used significantly more frequently in elderly patients (p = 0.003) and in hips with abductor deficiency (p < 0.001). The re-dislocation rate was 13.2% for DM bearings compared with 17.9% for standard bearings, and 22.2% for constrained liners (p = 0.432). Re-revision-free survival for DM bearings was 84% (95% confidence interval (CI) 0.77 to 0.91) compared with 74% (95% CI 0.67 to 0.81) for standard articulations, and 67% (95% CI 0.51 to 0.82) for constrained liners (p = 0.361). Younger age (hazard ratio (HR) 0.92 (95% CI 0.85 to 0.99); p = 0.031), lower comorbidity (HR 0.44 (95% CI 0.20 to 0.95); p = 0.037), smaller heads (HR 0.80 (95% CI 0.64 to 0.99); p = 0.046), and retention of the acetabular component (HR 8.26 (95% CI 1.37 to 49.96); p = 0.022) were significantly associated with re-dislocation. All DM bearings which re-dislocated were in patients with abductor muscle deficiency (HR 48.34 (95% CI 0.03 to 7,737.98); p = 0.303). The radiological analysis did not reveal a significant relationship between restoration of the geometry of the hip and re-dislocation. The mean mHHSs significantly improved from 43 points (0 to 88) to 67 points (20 to 91; p < 0.001) at the final follow-up, with no differences between the types of bearing. Conclusion. We found that the use of DM bearings reduced the rates of re-dislocation and re-revision in revision THA for recurrent dislocation, but did not guarantee stability. Abductor deficiency is an important predictor of persistent instability. Cite this article: Bone Joint J 2024;106-B(5 Supple B):89–97


The Bone & Joint Journal
Vol. 103-B, Issue 5 | Pages 931 - 938
1 May 2021
Liu Y Lu H Xu H Xie W Chen X Fu Z Zhang D Jiang B

Aims. The morphology of medial malleolar fracture is highly variable and difficult to characterize without 3D reconstruction. There is also no universally accepeted classification system. Thus, we aimed to characterize fracture patterns of the medial malleolus and propose a classification scheme based on 3D CT reconstruction. Methods. We retrospectively reviewed 537 consecutive cases of ankle fractures involving the medial malleolus treated in our institution. 3D fracture maps were produced by superimposing all the fracture lines onto a standard template. We sliced fracture fragments and the standard template based on selected sagittal and coronal planes to create 2D fracture maps, where angles α and β were measured. Angles α and β were defined as the acute angles formed by the fracture line and the horizontal line on the selected planes. Results. A total of 121 ankle fractures were included. We revealed several important fracture features, such as a high correlation between posterior collicular fractures and posteromedial fragments. Moreover, we generalized the fracture geometry into three recurrent patterns on the coronal view of 3D maps (transverse, vertical, and irregular) and five recurrent patterns on the lateral view (transverse, oblique, vertical, Y-shaped, and irregular). According to the fracture geometry on the coronal and lateral view of 3D maps, we subsequently categorized medial malleolar fractures into six types based on the recurrent patterns: anterior collicular fracture (27 type I, 22.3%), posterior collicular fracture (12 type II, 9.9%), concurrent fracture of anterior and posterior colliculus (16 type III, 13.2%), and supra-intercollicular groove fracture (66 type IV, 54.5%). Therewere three variants of type IV fractures: transverse (type IVa), vertical (type IVb), and comminuted fracture (type IVc). The angles α and β varied accordingly. Conclusion. Our findings yield insight into the characteristics and recurrent patterns of medial malleolar fractures. The proposed classification system is helpful in understanding injury mechanisms and guiding diagnosis, as well as surgical strategies. Cite this article: Bone Joint J 2021;103-B(5):931–938


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 81 - 86
1 Jun 2021
Mahfouz MR Abdel Fatah EE Johnson JM Komistek RD

Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative planning. The 3D US is radiation-free and offers numerous clinical opportunities for bone visualization rapidly during clinic visits, to enable preoperative planning with implant sizing. There is potential to extend its application to 3D dynamic ligament balancing, and intraoperative registration for use with robots and navigation systems. Cite this article: Bone Joint J 2021;103-B(6 Supple A):81–86


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 504 - 510
1 May 2023
Evans JT Salar O Whitehouse SL Sayers A Whitehouse MR Wilton T Hubble MJW

Aims

The Exeter V40 femoral stem is the most implanted stem in the National Joint Registry (NJR) for primary total hip arthroplasty (THA). In 2004, the 44/00/125 stem was released for use in ‘cement-in-cement’ revision cases. It has, however, been used ‘off-label’ as a primary stem when patient anatomy requires a smaller stem with a 44 mm offset. We aimed to investigate survival of this implant in comparison to others in the range when used in primary THAs recorded in the NJR.

Methods

We analyzed 328,737 primary THAs using the Exeter V40 stem, comprising 34.3% of the 958,869 from the start of the NJR to December 2018. Our exposure was the stem, and the outcome was all-cause construct revision. We stratified analyses into four groups: constructs using the 44/00/125 stem, those using the 44/0/150 stem, those including a 35.5/125 stem, and constructs using any other Exeter V40 stem.