McFarland fractures of the medial malleolus in
children, also classified as Salter–Harris Type III and IV fractures,
are associated with a high incidence of premature
Septicaemia resulting from meningococcal infection is a devastating illness affecting children. Those who survive can develop late orthopaedic sequelae from
Distal femoral physeal fractures in children have a high incidence of physeal arrest, occurring in a mean of 40% of cases. The underlying nature of the distal femoral physis may be the primary cause, but other factors have been postulated to contribute to the formation of a physeal bar. The purpose of this study was to assess the significance of contributing factors to physeal bar formation, in particular the use of percutaneous pins across the physis. We reviewed 55 patients with a median age of ten years (3 to 13), who had sustained displaced distal femoral physeal fractures. Most (40 of 55) were treated with percutaneous pinning after reduction, four were treated with screws and 11 with plaster. A total of 40 patients were assessed clinically and radiologically after skeletal maturity or at the time of formation of a bar. The remaining 15 were followed up for a minimum of two years. Formation of a physeal bar occurred in 12 (21.8%) patients, with the rate rising to 30.6% in patients with high-energy injuries compared with 5.3% in those with low-energy injuries. There was a significant trend for physeal arrest according to increasing severity using the Salter-Harris classification. Percutaneous smooth pins across the physis were not statistically associated with growth arrest.
Between 1990 and 2001, 24 children aged between 15 months and 11 years presented with late orthopaedic sequelae after meningococcal septicaemia. The median time to presentation was 32 months (12 to 119) after the acute phase of the disease. The reasons for referral included angular deformity, limb-length discrepancy, joint contracture and problems with prosthetic fitting. Angular deformity with or without limb-length discrepancy was the most common presentation. Partial growth arrest was the cause of the angular deformity. Multiple growth-plate involvement occurred in 14 children. The lower limbs were affected much more often than the upper. Twenty-three children underwent operations for realignment of the mechanical axis and limb-length equalisation. In 15 patients with angular deformity around the knee the deformity recurred. As a result we recommend performing a realignment procedure with epiphysiodesis of the remaining growth plate when correcting angular deformities.