Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 107-B, Issue 1 | Pages 103 - 107
1 Jan 2025
Fernandez MA Henshaw F Carlos WJ Kelly A Griffin XL Costa ML

Aims. There is compelling evidence for the use of cemented hip hemiarthroplasty for displaced intracapsular hip fractures; however, the risks of cement are well reported and in rare cases may be associated with haemodynamic collapse. It is therefore important to improve our understanding of haemodynamic instability, intraoperative monitoring, and strategies to reduce the risk to patients. Methods. We measured arterial blood pressure using the LiDCOrapid Continuous Non-invasive Arterial Pressure (CNAP) finger cuff during surgery in patients enrolled in the WHiTE 5 trial randomized to cemented or modern uncemented hip hemiarthroplasty at a single recruiting site. We observed the incidence, timing, and magnitude of haemodynamic instability at key stages of the surgical procedure. Results. We obtained measurements from 56 patients, of whom 46 had complete recordings and were used in the analysis. Modest falls in systolic blood pressure (20% to 30%) occurred in four patients (15%) who received a cemented hemiarthroplasty and one patient (5%) in the uncemented group. The fall in blood pressure occurred either within five minutes of cementing or at final hip reduction. We observed concurrent drops in cardiac output (CO) and stroke volume (SV). Conclusion. We observed the presence of two potential periods for haemodynamic instability during hip hemiarthroplasty surgery: the first was within five minutes of cementing the femoral canal and the second after final reduction of the prosthesis (observed in both cemented and uncemented hemiarthroplasty). The falls in blood pressure appeared to be driven by reduced CO and SV. Cite this article: Bone Joint J 2025;107-B(1):103–107


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1143 - 1154
1 Sep 2014
Mauffrey C Cuellar III DO Pieracci F Hak DJ Hammerberg EM Stahel PF Burlew CC Moore EE

Exsanguination is the second most common cause of death in patients who suffer severe trauma. The management of haemodynamically unstable high-energy pelvic injuries remains controversial, as there are no universally accepted guidelines to direct surgeons on the ideal use of pelvic packing or early angio-embolisation. Additionally, the optimal resuscitation strategy, which prevents or halts the progression of the trauma-induced coagulopathy, remains unknown. Although early and aggressive use of blood products in these patients appears to improve survival, over-enthusiastic resuscitative measures may not be the safest strategy.

This paper provides an overview of the classification of pelvic injuries and the current evidence on best-practice management of high-energy pelvic fractures, including resuscitation, transfusion of blood components, monitoring of coagulopathy, and procedural interventions including pre-peritoneal pelvic packing, external fixation and angiographic embolisation.

Cite this article: Bone Joint J 2014; 96-B:1143–54.


The Bone & Joint Journal
Vol. 100-B, Issue 9 | Pages 1214 - 1219
1 Sep 2018
Winkelmann M Lopez Izquierdo M Clausen J Liodakis E Mommsen P Blossey R Krettek C Zeckey C

Aims. This study aimed to analyze the correlation between transverse process (TP) fractures of the fourth (L4) and fifth (L5) lumbar vertebrae and biomechanical and haemodynamic stability in patients with a pelvic ring injury, since previous data are inconsistent. Patients and Methods. The study is a retrospective matched-pair analysis of patients with a pelvic fracture according to the modified Tile AO Müller and the Young and Burgess classification who presented to a level 1 trauma centre between January 2005 and December 2014. Results. A total of 728 patients with pelvic ring injuries were included, of whom 183 (25.1%) had a biomechanically unstable pelvic fracture. Of these patients, 84 (45.9%) had a fracture of a TP of L4 and/or L5. A total of 73 patients (13.4%) with a stable pelvic ring injury (p < 0.001) had a fracture of a TP. Patients with a fracture of a TP of L4 and/or L5 had a 5.5-fold risk (odds ratio (OR)) of having a biomechanically unstable pelvic injury. TP fractures (OR 1.6, p = 0.2) could not be confirmed as an independent predictor of haemodynamic instability. Conclusion. This is the first study that has demonstrated a positive correlation between a TP fracture of L4 and/or L5 and a biomechanically unstable pelvic ring injury. The presence of transverse process fractures of L4 and/or L5 indicates increased severity of pelvic injury and therefore can help in the planning of emergency treatment. Cite this article: Bone Joint J 2018;100-B:1214–19


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 651 - 658
1 May 2007
Day AC Kinmont C Bircher MD Kumar S

Crescent fracture dislocations are a well-recognised subset of pelvic ring injuries which result from a lateral compression force. They are characterised by disruption of the sacroiliac joint and extend proximally as a fracture of the posterior iliac wing. We describe a classification with three distinct types. Type I is characterised by a large crescent fragment and the dislocation comprises no more than one-third of the sacroiliac joint, which is typically inferior. Type II fractures are associated with an intermediate-size crescent fragment and the dislocation comprises between one- and two-thirds of the joint. Type III fractures are associated with a small crescent fragment where the dislocation comprises most, but not all of the joint. The principal goals of surgical intervention are the accurate and stable reduction of the sacroiliac joint. This classification proves useful in the selection of both the surgical approach and the reduction technique. A total of 16 patients were managed according to this classification and achieved good functional results approximately two years from the time of the index injury. Confounding factors compromise the summary short-form-36 and musculoskeletal functional assessment instrument scores, which is a well-recognised phenomenon when reporting the outcome of high-energy trauma.


The Bone & Joint Journal
Vol. 96-B, Issue 8 | Pages 1090 - 1097
1 Aug 2014
Perkins ZB Maytham GD Koers L Bates P Brohi K Tai NRM

We describe the impact of a targeted performance improvement programme and the associated performance improvement interventions, on mortality rates, error rates and process of care for haemodynamically unstable patients with pelvic fractures. Clinical care and performance improvement data for 185 adult patients with exsanguinating pelvic trauma presenting to a United Kingdom Major Trauma Centre between January 2007 and January 2011 were analysed with univariate and multivariate regression and compared with National data. In total 62 patients (34%) died from their injuries and opportunities for improved care were identified in one third of deaths.

Three major interventions were introduced during the study period in response to the findings. These were a massive haemorrhage protocol, a decision-making algorithm and employment of specialist pelvic orthopaedic surgeons. Interventions which improved performance were associated with an annual reduction in mortality (odds ratio 0.64 (95% confidence interval (CI) 0.44 to 0.93), p = 0.02), a reduction in error rates (p = 0.024) and significant improvements in the targeted processes of care. Exsanguinating patients with pelvic trauma are complex to manage and are associated with high mortality rates; implementation of a targeted performance improvement programme achieved sustained improvements in mortality, error rates and trauma care in this group of severely injured patients.

Cite this article: Bone Joint J 2014;96-B:1090–7.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 209 - 212
1 Feb 2005
Steele N Dodenhoff RM Ward AJ Morse MH

We prospectively studied the outcome of a protocol of prophylaxis for deep vein thrombosis (DVT) in 103 consecutive patients undergoing surgical stabilisation of pelvic and acetabular fractures. Low-molecular-weight heparin (LMWH) was administered within 24 hours of injury or on achieving haemodynamic stability. Patients were screened for proximal DVT by duplex ultrasonography performed ten to 14 days after surgery.

The incidence of proximal DVT was 10% and of pulmonary embolus 5%. Proximal DVT developed in two of 64 patients (3%) who had received LMWH within 24 hours of injury, but in eight of 36 patients (22%) who received LMWH more than 24 hours after the injury (p < 0.01). We conclude that LMWH, when begun without delay, is a safe and effective method of thromboprophylaxis in high-risk patients with major pelvic or acetabular fractures.