Advertisement for orthosearch.org.uk
Results 1 - 20 of 135
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 7 | Pages 1019 - 1023
1 Jul 2005
Shimogaki K Yasunaga Y Ochi M

Acetabular dysplasia was produced in 24 immature white rabbits. A rotational acetabular osteotomy was then carried out and radiological and histological studies of the articular cartilage were made. In the hips which did not undergo osteotomy, radiographs at 26 weeks showed that residual subluxation remained and arthritic changes such as narrowing of the joint space or dislocation were still seen. However, in the operated group there was a remarkable increase in cover, but arthritic changes were not observed. After 24 weeks, the Mankin grading score in the operated group was significantly lower than that in the non-operated group. The latter hips showed an irregular surface of the cartilage, exfoliation and proliferation of synovial tissue. In those undergoing osteotomy, primary cloning of chondrocytes or hypercellularity was seen and at 24 weeks after operation and metaplasia of the cartilage in the fibrous tissue was observed in the boundary between the medial area of the acetabulum and the acetabular fossa


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 8 | Pages 1110 - 1119
1 Aug 2009
Hepp P Osterhoff G Niederhagen M Marquass B Aigner T Bader A Josten C Schulz R

Perilesional changes of chronic focal osteochondral defects were assessed in the knees of 23 sheep. An osteochondral defect was created in the main load-bearing region of the medial condyle of the knees in a controlled, standardised manner. The perilesional cartilage was evaluated macroscopically and biopsies were taken at the time of production of the defect (T0), during a second operation one month later (T1), and after killing animals at three (T3; n = 8), four (T4; n = 8), and seven (T7; n = 8) months. All the samples were histologically assessed by the International Cartilage Repair Society grading system and Mankin histological scores. Biopsies were taken from human patients (n = 10) with chronic articular cartilage lesions and compared with the ovine specimens. The ovine perilesional cartilage presented with macroscopic and histological signs of degeneration. At T1 the International Cartilage Repair Society ‘Subchondral Bone’ score decreased from a mean of 3.0 (. sd. 0) to a mean of 1.9 (. sd. 0.3) and the ‘Matrix’ score from a mean of 3.0 (. sd. 0) to a mean of 2.5 (. sd. 0.5). This progressed further at T3, with the International Cartilage Repair Society ‘Surface’ grading, the ‘Matrix’ grading, ‘Cell Distribution’ and ‘Cell Viability’ grading further decreasing and the Mankin score rising from a mean of 1.3 (. sd. 1.4) to a mean of 5.1 (. sd. 1.6). Human biopsies achieved Mankin grading of a mean of 4.2 (. sd. 1.6) and were comparable with the ovine histology at T1 and T3. The perilesional cartilage in the animal model became chronic at one month and its histological appearance may be considered comparable with that seen in human osteochondral defects after trauma


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 11 | Pages 1539 - 1544
1 Nov 2007
Hibino N Hamada Y Sairyo K Yukata K Sano T Yasui N

This study was undertaken to elucidate the mechanism of biological repair at the tendon-bone junction in a rat model. The stump of the toe flexor tendon was sutured to a drilled hole in the tibia (tendon suture group, n = 23) to investigate healing of the tendon-bone junction both radiologically and histologically. Radiological and histological findings were compared with those observed in a sham control group where the bone alone was drilled (n = 19). The biomechanical strength of the repaired junction was confirmed by pull-out testing six weeks after surgery in four rats in the tendon suture group. Callus formation was observed at the site of repair in the tendon suture group, whereas in the sham group callus formation was minimal. During the pull-out test, the repaired tendon-bone junction did not fail because the musculotendinous junction always disrupted first. In order to understand the factors that influenced callus formation at the site of repair, four further groups were evaluated. The nature of the sutured tendon itself was investigated by analysing healing of a tendon stump after necrosis had been induced with liquid nitrogen in 16 cases. A proximal suture group (n = 16) and a partial tenotomy group (n = 16) were prepared to investigate the effects of biomechanical loading on the site of repair. Finally, a group where the periosteum had been excised at the site of repair (n = 16) was examined to study the role of the periosteum. These four groups showed less callus formation radiologically and histologically than did the tendon suture group. In conclusion, the sutured tendon-bone junction healed and achieved mechanical strength at six weeks after suturing, showing good local callus formation. The viability of the tendon stump, mechanical loading and intact periosteum were all found to be important factors for better callus formation at a repaired tendon-bone junction


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 6 | Pages 823 - 829
1 Jun 2009
Adachi N Motoyama M Deie M Ishikawa M Arihiro K Ochi M

We evaluated the histological changes before and after fixation in ten knees of ten patients with osteochondritis dissecans who had undergone fixation of the unstable lesions. There were seven males and three females with a mean age of 15 years (11 to 22). The procedure was performed either using bio-absorbable pins only or in combination with an autologous osteochondral plug. A needle biopsy was done at the time of fixation and at the time of a second-look arthroscopy at a mean of 7.8 months (6 to 9) after surgery. The biopsy specimens at the second-look arthroscopy showed significant improvement in the histological grading score compared with the pre-fixation scores (p < 0.01). In the specimens at the second-look arthroscopy, the extracellular matrix was stained more densely than at the time of fixation, especially in the middle to deep layers of the articular cartilage. Our findings show that articular cartilage regenerates after fixation of an unstable lesion in osteochondritis dissecans


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 554 - 560
1 Apr 2017
Tamai K Suzuki A Takahashi S Akhgar J Rahmani MS Hayashi K Ohyama S Nakamura H

Aims. We aimed to evaluate the temperature around the nerve root during drilling of the lamina and to determine whether irrigation during drilling can reduce the chance of nerve root injury. Materials and Methods. Lumbar nerve roots were exposed to frictional heat by high-speed drilling of the lamina in a live rabbit model, with saline (room temperature (RT) or chilled saline) or without saline (control) irrigation. We measured temperatures surrounding the nerve root and made histological evaluations. Results. In the control group, the mean temperature around the nerve root was 52.0°C (38.0°C to 75.5°C) after 60 seconds of drilling, and nerve root injuries were found in one out of 13 (7.7%) immediately, three out of 14 (21.4%) at three days, and 11 out of 25 (44.0%) at seven days post-operatively. While the RT group showed a significantly lower temperature around the nerve root compared with the control group (mean 46.5°C; 34.5°C to 66.9°C, p < 0.001), RT saline failed to significantly reduce the incidence of nerve root injury (ten out of 26; 38.5%; odds ratio (OR) 0.96; 95% confidence interval (CI) 0.516 to 1.785; p = 0.563). However, chilled saline irrigation resulted in a significantly lower temperature than the control group (mean 39.0°C; 35.3°C to 52.3°C; p < 0.001) and a lower rate of nerve root injury (two out of 21; 9.5%, OR 0.13; 95% CI 0.02 to 0.703, p = 0.010). Conclusion. Frictional heat caused by a high-speed drill can cause histological nerve root injury. Chilled saline irrigation had a more prominent effect than RT in reducing the incidence of the thermal injury during extended drilling. Cite this article: Bone Joint J 2017;99-B:554–60


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 304 - 310
1 Feb 2010
Jia W Zhang C Wang J Feng Y Ai Z

Platelet-leucocyte gel (PLG), a new biotechnological blood product, has hitherto been used primarily to treat chronic ulcers and to promote soft-tissue and bone regeneration in a wide range of medical fields. In this study, the antimicrobial efficacy of PLG against Staphylococcus aureus (ATCC 25923) was investigated in a rabbit model of osteomyelitis. Autologous PLG was injected into the tibial canal after inoculation with Staph. aureus. The prophylactic efficacy of PLG was evaluated by microbiological, radiological and histological examination. Animal groups included a treatment group that received systemic cefazolin and a control group that received no treatment. Treatment with PLG or cefazolin significantly reduced radiological and histological severity scores compared to the control group. This result was confirmed by a significant reduction in the infection rate and the number of viable bacteria. Although not comparable to cefazolin, PLG exhibited antimicrobial efficacy in vivo and therefore represents a novel strategy to prevent bone infection in humans


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 9 | Pages 1257 - 1262
1 Sep 2009
Sundar S Pendegrass CJ Oddy MJ Blunn GW

We used demineralised bone matrix (DBM) to augment re-attachment of tendon to a metal prosthesis in an in vivo ovine model of reconstruction of the extensor mechanism at the knee. We hypothesised that augmentation of the tendon-implant interface with DBM would enhance the functional and histological outcomes as compared with previously reported control reconstructions without DBM. Function was assessed at six and 12 weeks postoperatively, and histological examination was undertaken at 12 weeks. A significant increase of 23.5% was observed in functional weight-bearing at six weeks in the DBM-augmented group compared with non-augmented controls (p = 0.004). By 12 weeks augmentation with DBM resulted in regeneration of a more direct-type enthesis, with regions of fibrocartilage, mineralised fibrocartilage and bone. In the controls the interface was predominantly indirect, with the tendon attached to the bone graft-hydroxyapatite base plate by perforating collagen fibres


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 402 - 407
1 Mar 2007
Alcantara-Martos T Delgado-Martinez AD Vega MV Carrascal MT Munuera-Martinez L

We studied the effect of vitamin C on fracture healing in the elderly. A total of 80 elderly Osteogenic Disorder Shionogi rats were divided into four groups with different rates of vitamin C intake. A closed bilateral fracture was made in the middle third of the femur of each rat. Five weeks after fracture the femora were analysed by mechanical and histological testing. The groups with the lower vitamin C intake demonstrated a lower mechanical resistance of the healing callus and a lower histological grade. The vitamin C levels in blood during healing correlated with the torque resistance of the callus formed (r = 0.525). Therefore, the supplementary vitamin C improved the mechanical resistance of the fracture callus in elderly rats. If these results are similar in humans, vitamin C supplementation should be recommended during fracture healing in the elderly


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 2 | Pages 258 - 264
1 Feb 2007
Nagura I Fujioka H Kokubu T Makino T Sumi Y Kurosaka M

We developed a new porous scaffold made from a synthetic polymer, poly(DL-lactide-co-glycolide) (PLG), and evaluated its use in the repair of cartilage. Osteochondral defects made on the femoral trochlear of rabbits were treated by transplantation of the PLG scaffold, examined histologically and compared with an untreated control group. Fibrous tissue was initially organised in an arcade array with poor cellularity at the articular surface of the scaffold. The tissue regenerated to cartilage at the articular surface. In the subchondral area, new bone formed and the scaffold was absorbed. The histological scores were significantly higher in the defects treated by the scaffold than in the control group (p < 0.05). Our findings suggest that in an animal model the new porous PLG scaffold is effective for repairing full-thickness osteochondral defects without cultured cells and growth factors


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1099 - 1109
1 Aug 2007
Munirah S Samsudin OC Chen HC Salmah SHS Aminuddin BS Ruszymah BHI

Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous ‘chondrocyte-fibrin’ construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis. All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O’Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 5 | Pages 672 - 685
1 May 2007
Goodrich LR Hidaka C Robbins PD Evans CH Nixon AJ

Gene therapy with insulin-like growth factor-1 (IGF-1) increases matrix production and enhances chondrocyte proliferation and survival in vitro. The purpose of this study was to determine whether arthroscopically-grafted chondrocytes genetically modified by an adenovirus vector encoding equine IGF-1 (AdIGF-1) would have a beneficial effect on cartilage healing in an equine femoropatellar joint model. A total of 16 horses underwent arthroscopic repair of a single 15 mm cartilage defect in each femoropatellar joint. One joint received 2 × 10. 7. AdIGF-1 modified chondrocytes and the contralateral joint received 2 × 10. 7. naive (unmodified) chondrocytes. Repairs were analysed at four weeks, nine weeks and eight months after surgery. Morphological and histological appearance, IGF-1 and collagen type II gene expression (polymerase chain reaction, in situ hybridisation and immunohistochemistry), collagen type II content (cyanogen bromide and sodium dodecyl sulphate-polyacrylamide gel electrophoresis), proteoglycan content (dimethylmethylene blue assay), and gene expression for collagen type I, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, aggrecanase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and TIMP-3 were evaluated. Genetic modification of chondrocytes significantly increased IGF-1 mRNA and ligand production in repair tissue for up to nine weeks following transplantation. The gross and histological appearance of IGF-1 modified repair tissue was improved over control defects. Gross filling of defects was significantly improved at four weeks, and a more hyaline-like tissue covered the lesions at eight months. Histological outcome at four and nine weeks post-transplantation revealed greater tissue filling of defects transplanted with genetically modified chondrocytes, whereas repair tissue in control defects was thin and irregular and more fibrous. Collagen type II expression in IGF-1 gene-transduced defects was increased 100-fold at four weeks and correlated with increased collagen type II immunoreaction up to eight months. Genetic modification of chondrocytes with AdIGF-1 prior to transplantation improved early (four to nine weeks), and to a lesser degree long-term, cartilage healing in the equine model. The equine model of cartilage healing closely resembles human clinical cartilage repair. The results of this study suggest that cartilage healing can be enhanced through genetic modification of chondrocytes prior to transplantation


The Bone & Joint Journal
Vol. 97-B, Issue 6 | Pages 862 - 868
1 Jun 2015
Corominas-Frances L Sanpera I Saus-Sarrias C Tejada-Gavela S Sanpera-Iglesias J Frontera-Juan G

Rebound growth after hemiepiphysiodesis may be a normal event, but little is known about its causes, incidence or factors related to its intensity. The aim of this study was to evaluate rebound growth under controlled experimental conditions. A total of 22 six-week-old rabbits underwent a medial proximal tibial hemiepiphysiodesis using a two-hole plate and screws. Temporal growth plate arrest was maintained for three weeks, and animals were killed at intervals ranging between three days and three weeks after removal of the device. The radiological angulation of the proximal tibia was studied at weekly intervals during and after hemiepiphysiodesis. A histological study of the retrieved proximal physis of the tibia was performed. The mean angulation achieved at three weeks was 34.7° (standard deviation (. sd). 3.4), and this remained unchanged for the study period of up to two weeks. By three weeks after removal of the implant the mean angulation had dropped to 28.2° (. sd. 1.8) (p < 0.001). Histologically, widening of the medial side was noted during the first two weeks. By three weeks this widening had substantially disappeared and the normal columnar structure was virtually re-established. In our rabbit model, rebound was an event of variable incidence and intensity and, when present, did not appear immediately after restoration of growth, but took some time to appear. Cite this article: Bone Joint J 2015;97-B:862–8


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 5 | Pages 752 - 758
1 Jul 2004
Pötzl W Kümpers P Szuwart T Götze G Marquardt B Steinbeck J

Despite widespread use of radiofrequency (RF) shrinkage, there have been no animal studies on the effects of post-operative immobilisation on the histological properties of the shrunken tissue. We have therefore examined the role of post-operative immobilisation after RF shrinkage with special emphasis on the histological properties of collagenous tissue. One patellar tendon of 66 New Zealand White rabbits was shrunk. Six rabbits were killed immediately after the operation. Twenty rabbits were not immobilised, 20 were immobilised for three weeks and 20 for six weeks. Fibroblasts, collagen and vascular quality and density were evaluated on sections, stained by haematoxylin and eosin. Nine weeks after operation the histological properties were inferior to those of the contralateral control tendons. Shrunk tendons did not return to normal at any time after operation irrespective of whether the animals had been immobilised or not. All the parameters improved significantly between zero and three weeks after operation. Immobilised tendons tended to have a better and faster recovery. Careful rehabilitation is imperative after RF shrinkage. Immobilisation aids recovery of the histological properties. Our findings in this animal model support a period of immobilisation of more than three weeks


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 1 | Pages 131 - 137
1 Jan 2000
Menetrey J Kasemkijwattana C Day CS Bosch P Vogt M Fu FH Moreland MS Huard J

Injury to muscles is very common. We have previously observed that basic fibroblast growth factor (b-FGF), insulin growth factor type 1 (IGF-1) and nerve growth factor (NGF) are potent stimulators of the proliferation and fusion of myoblasts in vitro. We therefore injected these growth factors into mice with lacerations of the gastrocnemius muscle. The muscle regeneration was evaluated at one week by histological staining and quantitative histology. Muscle healing was assessed histologically and the contractile properties were measured one month after injury. Our findings showed that b-FGF, IGF and to a less extent NGF enhanced muscle regeneration in vivo compared with control muscle. At one month, muscles treated with IGF-1 and b-FGF showed improved healing and significantly increased fast-twitch and tetanus strengths. Our results suggest that b-FGF and IGF-1 stimulated muscle healing and may have a considerable effect on the treatment of muscle injuries


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 5 | Pages 726 - 736
1 May 2010
Hee HT Ismail HD Lim CT Goh JCH Wong HK

Although success has been achieved with implantation of bone marrow mesenchymal stem cells (bMSCs) in degenerative discs, its full potential may not be achieved if the harsh environment of the degenerative disc remains. Axial distraction has been shown to increase hydration and nutrition. Combining both therapies may have a synergistic effect in reversing degenerative disc disease. In order to evaluate the effect of bMSC implantation, axial distraction and combination therapy in stimulating regeneration and retarding degeneration in degenerative discs, we first induced disc degeneration by axial loading in a rabbit model. The rabbits in the intervention groups performed better with respect to disc height, morphological grading, histological scoring and average dead cell count. The groups with distraction performed better than those without on all criteria except the average dead cell count. Our findings suggest that bMSC implantation and distraction stimulate regenerative changes in degenerative discs in a rabbit model


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 586 - 594
1 Apr 2010
Sonnabend DH Howlett CR Young AA

The establishment of a suitable animal model of repair of the rotator cuff is difficult since the presence of a true rotator cuff anatomically appears to be restricted almost exclusively to advanced primates. Our observational study describes the healing process after repair of the cuff in a primate model. Lesions were prepared and repaired in eight ‘middle-aged’ baboons. Two each were killed at four, eight, 12 and 15 weeks post-operatively. The bone-tendon repair zones were assessed macroscopically and histologically. Healing of the baboon supraspinatus involved a sequence of stages resulting in the reestablishment of the bone-tendon junction. It was not uniform and occurred more rapidly at the sites of suture fixation than between them. Four weeks after repair the bone-tendon healing was immature. Whereas macroscopically the repair appeared to be healed at eight weeks, the Sharpey fibres holding the repair together did not appear in any considerable number before 12 weeks. By 15 weeks, the bone-tendon junction was almost, but not quite mature. Our results support the use of a post-operative rehabilitation programme in man which protects the surgical repair for at least 12 to 15 weeks in order to allow maturation of tendon-to-bone healing


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1614 - 1620
1 Nov 2010
Fini M Tschon M Ronchetti M Cavani F Bianchi G Mercuri M Alberghini M Cadossi R

Short intense electrical pulses transiently increase the permeability of the cell membrane, an effect known as electroporation. This can be combined with antiblastic drugs for ablation of tumours of the skin and subcutaneous tissue. The aim of this study was to test the efficacy of electroporation when applied to bone and to understand whether the presence of mineralised trabeculae would affect the capability of the electric field to porate the membrane of bone cells. Different levels of electrical field were applied to the femoral bone of rabbits. The field distribution and modelling were simulated by computer. Specimens of bone from treated and control rabbits were obtained for histology, histomorphometry and biomechanical testing. After seven days, the area of ablation had increased in line with the number of pulses and/or with the amplitude of the electrical field applied. The osteogenic activity in the ablated area had recovered by 30 days. Biomechanical testing showed structural integrity of the bone at both times. Electroporation using the appropriate combination of voltage and pulses induced ablation of bone cells without affecting the recovery of osteogenic activity. It can be an effective treatment in bone and when used in combination with drugs, an option for the treatment of metastases


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 2 | Pages 320 - 325
1 Feb 2010
Wang G Yang H Li M Lu S Chen X Cai X

In a rabbit model we investigated the efficacy of a silk fibroin/hydroxyapatite (SF/HA) composite on the repair of a segmental bone defect. Four types of porous SF/HA composites (SF/HA-1, SF/HA-2, SF/HA-3, SF/HA-4) with different material ratios, pore sizes, porosity and additives were implanted subcutaneously into Sprague-Dawley rats to observe biodegradation. SF/HA-3, which had characteristics more suitable for a bone substitite based on strength and resorption was selected as a scaffold and co-cultured with rabbit bone-marrow stromal cells (BMSCs). A segmental bone defect was created in the rabbit radius. The animals were randomised into group 1 (SF/HA-3 combined with BMSCs implanted into the bone defect), group 2 (SF/HA implanted alone) and group 3 (nothing implanted). They were killed at four, eight and 12 weeks for visual, radiological and histological study. The bone defects had complete union for group 1 and partial union in group 2, 12 weeks after operation. There was no formation of new bone in group 3. We conclude that SF/HA-3 combined with BMSCs supports bone healing and offers potential as a bone-graft substitute


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 120 - 125
1 Jan 2011
Lim H Bae J Song H Teoh SH Kim H Kum D

Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination. Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1236 - 1244
1 Sep 2006
Nishimori M Deie M Kanaya A Exham H Adachi N Ochi M

Bone marrow mesenchymal stromal cells were aspirated from immature male green fluorescent protein transgenic rats and cultured in a monolayer. Four weeks after the creation of the osteochondral defect, the rats were divided into three groups of 18: the control group, treated with an intra-articular injection of phosphate-buffered saline only; the drilling group, treated with an intra-articular injection of phosphate-buffered saline with a bone marrow-stimulating procedure; and the bone marrow mesenchymal stromal cells group, treated with an intra-articular injection of bone marrow mesenchymal stromal cells plus a bone marrow-stimulating procedure. The rats were then killed at 4, 8 and 12 weeks after treatment and examined. The histological scores were significantly better in the bone marrow mesenchymal stromal cells group than in the control and drilling groups at all time points (p < 0.05). The fluorescence of the green fluorescent protein-positive cells could be observed in specimens four weeks after treatment