Advertisement for orthosearch.org.uk
Results 1 - 20 of 73
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 508 - 512
1 Apr 2014
van Amerongen EA Creemers LB Kaoui N Bekkers JEJ Kon M Schuurman AH

Damage to the cartilage of the distal radioulnar joint frequently leads to pain and limitation of movement, therefore repair of this joint cartilage would be highly desirable. The purpose of this study was to investigate the fixation of scaffold in cartilage defects of this joint as part of matrix-assisted regenerative autologous cartilage techniques. Two techniques of fixation of collagen scaffolds, one involving fibrin glue alone and one with fibrin glue and sutures, were compared in artificially created cartilage defects of the distal radioulnar joint in a human cadaver. After being subjected to continuous passive rotation, the methods of fixation were evaluated for cover of the defect and pull out force. No statistically significant differences were found between the two techniques for either cover of the defect or integrity of the scaffold. However, a significantly increased mean pull out force was found for the combined procedure, 0.665 N (0.150 to 1.160) versus 0.242 N (0.060 to 0.730) for glue fixation (p = 0.001). This suggests that although successful fixation of a collagen type I/III scaffold in a distal radioulnar joint cartilage defect is feasible with both forms of fixation, fixation with glue and sutures is preferable. Cite this article: Bone Joint J 2014;96-B:508–12


The Journal of Bone & Joint Surgery British Volume
Vol. 57-B, Issue 3 | Pages 302 - 313
1 Aug 1975
Day WH Swanson SAV Freeman MAR

The purpose of the work described was to find the average pressure on each of several areas of the acetabular cartilage of the cadaver hip under physiological loads. By obtaining load-deflection curves for one chosen area of cartilage, firstly with all the cartilage present and then after the successive removal of other areas, the fractions of the original load carried by the several areas were found, and hence the average pressures on those areas. Seventeen hips (age range twenty. two to eighty-seven years) were examined. Local pressures varied from zero to 3.4 times the average pressure in each hip. The highest pressures in the series (about 4 to 5 megaNewtons per square metre) were on areas of thin fibrocartilage which were identified at the zenith of certain acetabula. The results are too few to establish whether or not the pressure distribution was age-related. The higher pressures found are within the range which in other experiments has led to fatigue failure of femoral head cartilage, and it is suggested that hips in which such pressures exist under loads of three times body weight may be predisposed to osteoarthritis.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 778 - 782
1 Jun 2014
Tinney A Khot A Eizenberg N Wolfe R Graham HK

Lengthening of the conjoined tendon of the gastrocnemius aponeurosis and soleus fascia is frequently used in the treatment of equinus deformities in children and adults. The Vulpius procedure as described in most orthopaedic texts is a division of the conjoined tendon in the shape of an inverted V. However, transverse division was also described by Vulpius and Stoffel, and has been reported in some clinical studies. We studied the anatomy and biomechanics of transverse division of the conjoined tendon in 12 human cadavers (24 legs). Transverse division of the conjoined tendon resulted in predictable, controlled lengthening of the gastrocsoleus muscle-tendon unit. The lengthening achieved was dependent both on the level of the cut in the conjoined tendon and division of the midline raphé. Division at a proximal level resulted in a mean lengthening of 15.2 mm (. sd . 2.0, (12 to 19), which increased to 17.1 mm (. sd . 1.8, (14 to 20) after division of the midline raphé. Division at a distal level resulted in a mean lengthening of 21.0 mm (. sd. 2.0, (18 to 25), which increased to 26.4 mm (. sd . 1.4, (24 to 29) after division of the raphé. These differences were significant (p < 0.001). Cite this article: Bone Joint J 2014; 96-B:778–82


The Bone & Joint Journal
Vol. 105-B, Issue 3 | Pages 261 - 268
1 Mar 2023
Ruhr M Huber G Niki Y Lohner L Ondruschka B Morlock MM

Aims. The aim of the study was to investigate whether the primary stability of press-fit acetabular components can be improved by altering the impaction procedure. Methods. Three impaction procedures were used to implant acetabular components into human cadaveric acetabula using a powered impaction device. An impaction frequency of 1 Hz until complete component seating served as reference. Overimpaction was simulated by adding ten strokes after complete component seating. High-frequency implantation was performed at 6 Hz. The lever-out moment of the acetabular components was used as measure for primary stability. Permanent bone deformation was assessed by comparison of double micro-CT (µCT) measurements before and after impaction. Acetabular component deformation and impaction forces were recorded, and the extent of bone-implant contact was determined from 3D laser scans. Results. Overimpaction reduced primary acetabular component stability (p = 0.038) but did not significantly increase strain release after implantation (p = 0.117) or plastic deformations (p = 0.193). Higher press-fits were associated with larger polar gaps for the 1 Hz reference impaction (p = 0.002, R. 2. = 0.77), with a similar trend for overimpaction (p = 0.082, R. 2. = 0.31). High-frequency impaction did not significantly increase primary stability (p = 0.170) at lower impaction forces (p = 0.001); it was associated with smaller plastic deformations (p = 0.035, R. 2. = 0.34) and a trend for increased acetabular component relaxation between strokes (p = 0.112). Higher press-fit was not related to larger polar gaps for the 6 Hz impaction (p = 0.346). Conclusion. Overimpaction of press-fit acetabular components should be prevented since additional strokes can be associated with increased bone damage and reduced primary stability as shown in this study. High-frequency impaction at 6 Hz was shown to be beneficial compared with 1 Hz impaction. This benefit has to be confirmed in clinical studies. Cite this article: Bone Joint J 2023;105-B(3):261–268


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 696 - 702
1 May 2016
Theologis AA Burch S Pekmezci M

Aims. We compared the accuracy, operating time and radiation exposure of the introduction of iliosacral screws using O-arm/Stealth Navigation and standard fluoroscopy. Materials and Methods. Iliosacral screws were introduced percutaneously into the first sacral body (S1) of ten human cadavers, four men and six women. The mean age was 77 years (58 to 85). Screws were introduced using a standard technique into the left side of S1 using C-Arm fluoroscopy and then into the right side using O-Arm/Stealth Navigation. The radiation was measured on the surgeon by dosimeters placed under a lead thyroid shield and apron, on a finger, a hat and on the cadavers. Results. There were no neuroforaminal breaches in either group. The set-up time for the O-Arm was significantly longer than for the C-Arm, while total time for placement of the screws was significantly shorter for the O-Arm than for the C-Arm (p = 0.001). The mean absorbed radiation dose during fluoroscopy was 1063 mRad (432.5 mRad to 4150 mRad). No radiation was detected on the surgeon during fluoroscopy, or when he left the room during the use of the O-Arm. The mean radiation detected on the cadavers was significantly higher in the O-Arm group (2710 mRem standard deviation (. sd. ) 1922) than during fluoroscopy (11.9 mRem . sd 14.8). (p < 0.01). Conclusion. O-Arm/Stealth Navigation allows for faster percutaneous placement of iliosacral screws in a radiation-free environment for surgeons, albeit with the same accuracy and significantly more radiation exposure to cadavers, when compared with standard fluoroscopy. Take home message: Placement of iliosacral screws with O-Arm/Stealth Navigation can be performed safely and effectively. Cite this article: Bone Joint J 2016;98-B:696–702


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 602 - 608
1 Apr 2010
Drobnič M Radosavljevič D Cör A Brittberg M Stražar K

We compared the quality of debridement of chondral lesions performed by four arthroscopic (SH, shaver; CU, curette; SHCU, shaver and curette; BP, bipolar electrodes) and one open technique (OPEN, scalpel and curette) which are used prior to autologous chondrocyte implantation (ACI). The ex vivo simulation of all five techniques was carried out on six juvenile equine stifle joints. The OPEN, SH and SHCU techniques were tested on knees harvested from six adult human cadavers. The most vertical walls with the least adjacent damage to cartilage were obtained with the OPEN technique. The CU and SHCU methods gave inferior, but still acceptable results whereas the SH technique alone resulted in a crater-like defect and the BP method undermined the cartilage wall. The subchondral bone was severely violated in all the equine samples which might have been peculiar to this model. The predominant depth of the debridement in the adult human samples was at the level of the calcified cartilage. Some minor penetrations of the subchondral end-plate were induced regardless of the instrumentation used. Our study suggests that not all routine arthroscopic instruments are suitable for the preparation of a defect for ACI. We have shown that the preferred debridement technique is either open or arthroscopically-assisted manual curettage. The use of juvenile equine stifles was not appropriate for the study of the cartilage-subchondral bone interface


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 692 - 695
1 May 2006
Karataglis D Kapetanos G Lontos A Christodoulou A Christoforides J Pournaras J

The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength. Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws


The Bone & Joint Journal
Vol. 96-B, Issue 1 | Pages 48 - 53
1 Jan 2014
Solomon LB Hofstaetter JG Bolt MJ Howie DW

We investigated the detailed anatomy of the gluteus maximus, gluteus medius and gluteus minimus and their neurovascular supply in 22 hips in 11 embalmed adult Caucasian human cadavers. This led to the development of a surgical technique for an extended posterior approach to the hip and pelvis that exposes the supra-acetabular ilium and preserves the glutei during revision hip surgery. Proximal to distal mobilisation of the gluteus medius from the posterior gluteal line permits exposure and mobilisation of the superior gluteal neurovascular bundle between the sciatic notch and the entrance to the gluteus medius, enabling a wider exposure of the supra-acetabular ilium. This technique was subsequently used in nine patients undergoing revision total hip replacement involving the reconstruction of nine Paprosky 3B acetabular defects, five of which had pelvic discontinuity. Intra-operative electromyography showed that the innervation of the gluteal muscles was not affected by surgery. Clinical follow-up demonstrated good hip abduction function in all patients. These results were compared with those of a matched cohort treated through a Kocher–Langenbeck approach. Our modified approach maximises the exposure of the ilium above the sciatic notch while protecting the gluteal muscles and their neurovascular bundle. Cite this article: Bone Joint J 2014;96-B:48–53


The Bone & Joint Journal
Vol. 100-B, Issue 8 | Pages 1060 - 1065
1 Aug 2018
Hwang J Shields MN Berglund LJ Hooke AW Fitzsimmons JS O’Driscoll SW

Aims. The aim of this study was to evaluate two hypotheses. First, that disruption of posterior bundle of the medial collateral ligament (PMCL) has to occur for the elbow to subluxate in cases of posteromedial rotatory instability (PMRI) and second, that ulnohumeral contact pressures increase after disruption of the PMCL. Materials and Methods. Six human cadaveric elbows were prepared on a custom-designed apparatus which allowed muscle loading and passive elbow motion under gravitational varus. Joint contact pressures were measured sequentially in the intact elbow (INTACT), followed by an anteromedial subtype two coronoid fracture (COR), a lateral collateral ligament (LCL) tear (COR + LCL), and a PMCL tear (COR + LCL + PMCL). Results. There was no subluxation or joint incongruity in the INTACT, COR, and COR + LCL specimens. All specimens in the COR + LCL + PMCL group subluxated under gravity-varus loads. The mean articular contact pressure of the COR + LCL group was significantly higher than those in the INTACT and the COR groups. The mean articular contact pressure of the COR + LCL + PMCL group was significantly higher than that of the INTACT group, but not higher than that of the COR + LCL group. Conclusion. In the presence of an anteromedial fracture and disruption of the LCL, the posterior bundle of the MCL has to be disrupted for gross subluxation of the elbow to occur. However, elevated joint contact pressures are seen after an anteromedial fracture and LCL disruption even in the absence of such subluxation. Cite this article: Bone Joint J 2018;100-B:1060–5


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 962 - 970
1 Jul 2007
Albert C Patil S Frei H Masri B Duncan C Oxland T Fernlund G

This study explored the relationship between the initial stability of the femoral component and penetration of cement into the graft bed following impaction allografting. Impaction allografting was carried out in human cadaveric femurs. In one group the cement was pressurised conventionally but in the other it was not pressurised. Migration and micromotion of the implant were measured under simulated walking loads. The specimens were then cross-sectioned and penetration of the cement measured. Around the distal half of the implant we found approximately 70% and 40% of contact of the cement with the endosteum in the pressure and no-pressure groups, respectively. The distal migration/micromotion, and valgus/varus migration were significantly higher in the no-pressure group than in that subjected to pressure. These motion components correlated negatively with the mean area of cement and its contact with the endosteum. The presence of cement at the endosteum appears to play an important role in the initial stability of the implant following impaction allografting


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 7 | Pages 971 - 976
1 Jul 2007
Kampa RJ Prasthofer A Lawrence-Watt DJ Pattison RM

In order to determine the potential for an internervous safe zone, 20 hips from human cadavers were dissected to map out the precise pattern of innervation of the hip capsule. The results were illustrated in the form of a clock face. The reference point for measurement was the inferior acetabular notch, representing six o’clock. Capsular branches from between five and seven nerves contributed to each hip joint, and were found to innervate the capsule in a relatively constant pattern. An internervous safe zone was identified anterosuperiorly in an arc of 45° between the positions of one o’clock and half past two. Our study shows that there is an internervous zone that could be safely used in a capsule-retaining anterior, anterolateral or lateral approach to the hip, or during portal placement in hip arthroscopy


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 7 | Pages 937 - 941
1 Jul 2011
Bae J Oh J Chon C Oh C Hwang J Yoon Y

We evaluated the biomechanical properties of two different methods of fixation for unstable fractures of the proximal humerus. Biomechanical testing of the two groups, locking plate alone (LP), and locking plate with a fibular strut graft (LPSG), was performed using seven pairs of human cadaveric humeri. Cyclical loads between 10 N and 80 N at 5 Hz were applied for 1 000 000 cycles. Immediately after cycling, an increasing axial load was applied at a rate of displacement of 5 mm/min. The displacement of the construct, maximum failure load, stiffness and mode of failure were compared. The displacement was significantly less in the LPSG group than in the LP group (p = 0.031). All maximum failure loads and measures of stiffness in the LPSG group were significantly higher than those in the LP group (p = 0.024 and p = 0.035, respectively). In the LP group, varus collapse and plate bending were seen. In the LPSG group, the humeral head cut out and the fibular strut grafts fractured. No broken plates or screws were seen in either group. We conclude that strut graft augmentation significantly increases both the maximum failure load and the initial stiffness of this construct compared with a locking plate alone


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 9 | Pages 1178 - 1182
1 Sep 2006
Stanley JK Penn DS Wasseem M

Surgical access to the head of the radius is usually performed through a lateral approach. We present an alternative technique through a modified posterior approach which was developed following dissections of 22 human cadavers. An osteotomy of the supinator tuberosity was performed and reflected as a single unit with the attached annular ligament. Excellent exposure of the head of the radius was achieved, replacement of the head was undertaken and the osteotomy site repaired. The elbows were stable and had a full range of movement. The approach was then carried out on 13 patients for elective replacement of the head and was found to be safe and reproducible. In the patient group all osteotomies united, the elbows were stable and had an improved range of supination and pronation. There was no change in flexion and extension of the elbow. Complications included a haematoma and a reflex sympathetic dystrophy. The modified posterior approach provides excellent access to the head and neck of the radius, gives good stability of the elbow and allows early mobilisation of the joint


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 2 | Pages 267 - 271
1 Feb 2005
van Haaren EH Smit TH Phipps K Wuisman PIJM Blunn G Heyligers IC

Impacted morsellised allografts have been used successfully to address the problem of poor bone stock in revision surgery. However, there are concerns about the transmission of pathogens, the high cost and the shortage of supply of donor bone. Bone-graft extenders, such as tricalcium phosphate (TCP) and hydroxyapatite (HA), have been developed to minimise the use of donor bone. In a human cadaver model we have evaluated the surgical and mechanical feasibility of a TCP/HA bone-graft extender during impaction grafting revision surgery. A TCP/HA allograft mix increased the risk of producing a fissure in the femur during the impaction procedure, but provided a higher initial mechanical stability when compared with bone graft alone. The implications of the use of this type of graft extender in impaction grafting revision surgery are discussed


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1364 - 1368
1 Oct 2005
Brinkman J Schwering PJA Blankevoort L Koolos JG Luites J Wymenga AB

We have quantitatively documented the insertion geometry of the main stabilising structures of the posterolateral corner of the knee in 34 human cadavers. The lateral collateral ligament inserted posterior (4.6 mm, . sd. 2) and proximal (1.3 mm, . sd. 3.6) to the lateral epicondyle of the femur and posterior (8.1 mm, . sd. 3.2) to the anterior point of the head of the fibula. On the femur, the popliteus tendon inserted distally (11 mm, . sd. 0.8) and either anterior or posterior (mean 0.84 mm anterior, . sd. 4) to the lateral collateral ligament. The popliteofibular ligament inserted distal (1.3 mm, . sd. 1.2) and anterior (0.5 mm, . sd. 2.0) to the tip of the styloid process of the fibula. The ligaments had a consistent pattern of insertion and, despite the variation between specimens, the standard deviations were less than the typical size of drill hole used in reconstruction of the posterolateral corner. The data provided in this study can be used in the anatomical repair and reconstruction of this region of the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 168 - 172
1 Feb 2006
Mayr E de la Barrera JM Eller G Bach C Nogler M

In navigated total hip arthroplasty, the pelvis and the femur are tracked by means of rigid bodies fixed directly to the bones. Exact tracking throughout the procedure requires that the connection between the marker and bone remains stable in terms of translation and rotation. We carried out a cadaver study to compare the intra-operative stability of markers consisting of an anchoring screw with a rotational stabiliser and of pairs of pins and wires of different diameters connected with clamps. These devices were tested at different locations in the femur. Three human cadavers were placed supine on an operating table, with a reference marker positioned in the area of the greater trochanter. K-wires (3.2 mm), Steinman pins (3 and 4 mm), Apex pins (3 and 4 mm), and a standard screw were used as fixation devices. They were positioned medially in the proximal third of the femur, ventrally in the middle third and laterally in the distal portion. In six different positions of the leg, the spatial positions were recorded with a navigation system. Compared with the standard single screw, with the exception of the 3 mm Apex pins, the two-pin systems were associated with less movement of the marker and could be inserted less invasively. With the knee flexed to 90° and the dislocated hip rotated externally until the lower leg was parallel to the table (figure-four position), all the anchoring devices showed substantial deflection of 1.5° to 2.5°. The most secure area for anchoring markers was the lateral aspect of the femur


The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1099 - 1105
1 Aug 2016
Weiser L Dreimann M Huber G Sellenschloh K Püschel K Morlock MM Rueger JM Lehmann W

Aims. Loosening of pedicle screws is a major complication of posterior spinal stabilisation, especially in the osteoporotic spine. Our aim was to evaluate the effect of cement augmentation compared with extended dorsal instrumentation on the stability of posterior spinal fixation. Materials and Methods. A total of 12 osteoporotic human cadaveric spines (T11-L3) were randomised by bone mineral density into two groups and instrumented with pedicle screws: group I (SHORT) separated T12 or L2 and group II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were augmented with cement unilaterally in each vertebra. Fatigue testing was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz) load with stepwise increasing peak force. Results. Augmentation showed no significant increase in the mean cycles to failure and fatigue force (SHORT p = 0.067; EXTENDED p = 0.239). Extending the instrumentation resulted in a significantly increased number of cycles to failure and a significantly higher fatigue force compared with the SHORT instrumentation (EXTENDED non-augmented + 76%, p < 0.001; EXTENDED augmented + 87%, p < 0.001). Conclusion. The stabilising effect of cement augmentation of pedicle screws might not be as beneficial as expected from biomechanical pull-out tests. Lengthening the dorsal instrumentation results in a much higher increase of stability during fatigue testing in the osteoporotic spine compared with cement augmentation. Cite this article: Bone Joint J 2016;98-B:1099–1105


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 385 - 389
1 Mar 2014
Attal R Maestri V Doshi HK Onder U Smekal V Blauth M Schmoelz W

Using human cadaver specimens, we investigated the role of supplementary fibular plating in the treatment of distal tibial fractures using an intramedullary nail. Fibular plating is thought to improve stability in these situations, but has been reported to have increased soft-tissue complications and to impair union of the fracture. We proposed that multidirectional locking screws provide adequate stability, making additional fibular plating unnecessary. A distal tibiofibular osteotomy model performed on matched fresh-frozen lower limb specimens was stabilised with reamed nails using conventional biplanar distal locking (CDL) or multidirectional distal locking (MDL) options with and without fibular plating. Rotational stiffness was assessed under a constant axial force of 150 N and a superimposed torque of ± 5 Nm. Total movement, and neutral zone and fracture gap movement were analysed. In the CDL group, fibular plating improved stiffness at the tibial fracture site, albeit to a small degree (p = 0.013). In the MDL group additional fibular plating did not increase the stiffness. The MDL nail without fibular plating was significantly more stable than the CDL nail with an additional fibular plate (p = 0.008). These findings suggest that additional fibular plating does not improve stability if a multidirectional distal locking intramedullary nail is used, and is therefore unnecessary if not needed to aid reduction. Cite this article: Bone Joint J 2014;96-B:385–9


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 82 - 87
1 Jan 2009
Charalambous CP Stanley JK Siddique I Aster A Gagey O

The lateral ligament complex is the primary constraint to posterolateral rotatory laxity of the elbow, and if it is disrupted during surgery, posterolateral instability may ensue. The Wrightington approach to the head of the radius involves osteotomising the ulnar insertion of this ligament, rather than incising through it as in the classic posterolateral (Kocher) approach. In this biomechanical study of 17 human cadaver elbows, we demonstrate that the surgical approach to the head can influence posterolateral laxity, with the Wrightington approach producing less posterolateral rotatory laxity than the posterolateral approach