Aims. Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based
The aim of this study was to conduct the largest low contact stress (LCS) retrieval study to elucidate the failure mechanisms of the Porocoat and Duofix femoral component. The latter design was voluntarily recalled by the manufacturer. Uncemented LCS explants were divided into three groups: Duofix, Porocoat, and mixed. Demographics, polyethylene wear, tissue ingrowth, and metallurgical analyses were performed.Aims
Materials and Methods
Digital radiography is becoming widespread. Accurate pre-operative templating of digital images of the hip traditionally involves positioning a calibration object at its centre. This can be difficult and cause embarrassment. We have devised a method whereby a planar disc placed on the radiographic cassette accounts for the expected magnification. Initial examination of 50 pelvic CT scans showed a mean hip centre distance of 117 mm (79 to 142) above the gluteal skin. Further calculations predicted that a disc of 37.17 mm diameter, placed on the cassette, would appear identical to a 30 mm sphere placed at the level of the centre of the hip as requested by our templating software. We assessed accuracy and reproducibility by ‘reverse calibration’ of 20 radiographs taken three months after hip replacement using simultaneous sphere and disc methods, and a further 20 with a precision disc of accurate size. Even when variations in patient size were ignored, the disc proved more accurate and reliable than the sphere. The technique is reliable, robust, cost effective and acceptable to patients and radiographers. It can easily be used in any radiography department after a few simple calculations and manufacture of appropriately-sized discs.