Posterior fixation of intervertebral discs is used to treat, and occasionally diagnose, discogenic pain since it is thought that it will reduce the
Spines are often stabilised posteriorly by
We have investigated the errors in the identification of the transepicondylar axis and the anteroposterior axis between a minimally-invasive and a conventional approach in four fresh-frozen cadaver knees. The errors in aligning the femoral prosthesis were compared with the reference transepicondylar axis as established by CT. The error in the identification of the transepicondylar axis was significantly higher in the minimal approach (4.5° of
Malrotation of the femoral component is a cause of patellofemoral maltracking after total knee arthroplasty. Its precise effect on the patellofemoral mechanics has not been well quantified. We have developed an in vitro method to measure the influence of patellar maltracking on contact. Maltracking was induced by progressively rotating the femoral component either
Dislocation remains a major concern after total hip replacement, and is often attributed to malposition of the components. The optimum position for placement of the components remains uncertain. We have attempted to identify a relatively safe zone in which movement of the hip will occur without impingement, even if one component is positioned incorrectly. A three-dimensional computer model was designed to simulate impingement and used to examine 125 combinations of positioning of the components in order to allow maximum movement without impingement. Increase in acetabular and/or femoral anteversion allowed greater
Despite worldwide clinical use of bio-absorbable devices for
In 13 unloaded living knees we confirmed the findings previously obtained in the unloaded cadaver knee during flexion and external rotation/
Malpositioning of the trochanteric entry point
during the introduction of an intramedullary nail may cause iatrogenic
fracture or malreduction. Although the optimal point of insertion
in the coronal plane has been well described, positioning in the
sagittal plane is poorly defined. . The paired femora from 374 cadavers were placed both in the anatomical
position and in
The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, . sd. 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, . sd. 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, . sd. 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, . sd. 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, . sd. 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards
Corrective osteotomies are often planned and performed on the basis of normal anatomical proportions. We have evaluated the length and torsion of the segments of the lower limb in normal individuals, to analyse the differences between left and right sides, and to provide tolerance figures for both length and torsion. We used CT on 355 adult patients and measured length and torsion by the Ulm method. We excluded all patients with evidence of trauma, infection, tumour or any congenital disorder. The mean length of 511 femora was 46.3 ± 6.4 cm (±2. sd. ) and of 513 tibiae 36.9 ± 5.6 cm; the mean total length of 378 lower limbs was 83.2 ± 11.4 cm with a tibiofemoral ratio of 1 to 1.26 ± 0.1. The 99th percentile level for length difference in 178 paired femora was 1.2 cm, in 171 paired tibiae 1.0 cm and in 60 paired lower limbs 1.4 cm. In 505 femora the mean
The human acetabulofemoral joint is commonly modelled as a pure ball-and-socket joint, but there has been no quantitative assessment of this assumption in the literature. Our aim was to test the limits and validity of this hypothesis. We performed experiments on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and the femur. Movements were recorded using stereophotogrammetry while an operator rotated the cadaver’s acetabulofemoral joint, exploiting the widest possible range of movement. The functional consistency of the acetabulofemoral joint as a pure spherical joint was assessed by comparing the magnitude of the translations of the hip joint centre as obtained on cadavers, with the centre of rotation of two metal segments linked through a perfectly spherical hinge. The results showed that the radii of the spheres containing 95% of the positions of the estimated centres of rotation were separated by less than 1 mm for both the acetabulofemoral joint and the mechanical spherical hinge. Therefore, the acetabulofemoral joint can be modelled as a spherical joint within the considered range of movement (flexion/extension 20° to 70°; abduction/adduction 0° to 45°;
Although much has been published on the causes of slipped upper femoral epiphysis and the results of treatment, little attention has been given to the mechanism of the slip. This study presents the results of the analysis of 13 adolescent femora, and the attempts to reproduce the radiological appearances of a typical slip. The mean age of the skeletons was 13 years (11 to 15). It was found that the
We studied active flexion from 90° to 133° and passive flexion to 162° using MRI in 20 unloaded knees in Japanese subjects. Flexion over this arc is accompanied by backward movement of the medial femoral condyle of 4.0 mm and by backward movement laterally of 15 mm, i.e., by
We retrieved 159 femoral heads at revision surgery to determine changes in surface configuration. Macroscopic wear of the head was observed in three bipolar hip prostheses as a result of three-body wear. There was a considerable change in surface roughness in the
Our objectives were to establish the envelope of passive movement and to demonstrate the kinematic behaviour of the knee during standard clinical tests before and after reconstruction of the anterior cruciate ligament (ACL). An electromagnetic device was used to measure movement of the joint during surgery. Reconstruction of the ACL significantly reduced the overall envelope of tibial rotation (10° to 90° flexion), moved this envelope into external rotation from 0° to 20° flexion, and reduced the anterior position of the tibial plateau (5° to 30° flexion) (p <
0.05 for all). During the pivot-shift test in early flexion there was progressive anterior tibial subluxation with
We present a new approach for the accurate reconstruction of three-dimensional skeletal positions using roentgen single-plane photogrammetric analysis (RSPA). This technique uses a minimum of three markers embedded in each segment which allow continuous, real-time,
Transarticular screws at the C1 to C2 level of the cervical spine provide rigid fixation, but there is a danger of injury to a vertebral artery. The risk is related to the technical skill of the surgeon and to variations in local anatomy. We studied the grooves for the vertebral artery in 50 dry specimens of the second cervical vertebra (C2). They were often asymmetrical, and in 11 specimens one of the grooves was deep enough to reduce the
There is no diagnostic, non-invasive method for the early detection of loosening after total hip arthroplasty. In a pilot study, we have analysed two serum markers of bone remodelling, procollagen I C-terminal extension peptide (PICP) and cross-linked N-terminal telopeptide (NTx), as well as the diagnostic performance of NTx for the assessment of osteolysis. We recruited 21 patients with loosening (group I), 18 with a well-fixed prosthesis (group II) and 17 at the time of primary arthroplasty for osteoarthritis (OA) (group III).
To study the effect of ligament injuries and surgical repair we investigated the three-dimensional kinematics of the ankle joint complex and the talocrural and the subtalar joints in seven fresh-frozen lower legs before and after sectioning and reconstruction of the ligaments. A foot movement simulator produced controlled torque in one plane of movement while allowing unconstrained movement in the remainder. After testing the intact joint the measurements were repeated after simulation of ligament injuries by cutting the anterior talofibular and calcaneofibular ligaments. The tests were repeated after the Evans, Watson-Jones and Chrisman-Snook tenodeses. The range of movement (ROM) was measured using two goniometer systems which determined the relative movement between the tibia and talus (talocrural ROM) and between the talus and calcaneus (subtalar ROM). Ligament lesions led to increased inversion and
In six unloaded cadaver knees we used MRI to determine the shapes of the articular surfaces and their relative movements. These were confirmed by dissection. Medially, the femoral condyle in sagittal section is composed of the arcs of two circles and that of the tibia of two angled flats. The anterior facets articulate in extension. At about 20° the femur ‘rocks’ to articulate through the posterior facets. The medial femoral condyle does not move anteroposteriorly with flexion to 110°. Laterally, the femoral condyle is composed entirely, or almost entirely, of a single circular facet similar in radius and arc to the posterior medial facet. The tibia is roughly flat. The femur tends to roll backwards with flexion. The combination during flexion of no antero-posterior movement medially (i.e., sliding) and backward rolling (combined with sliding) laterally equates to