A modular femoral head–neck junction has practical
advantages in total hip replacement. Taper fretting and corrosion
have so far been an infrequent cause of revision. The role of design
and manufacturing variables continues to be debated. Over the past
decade several changes in technology and clinical practice might
result in an increase in clinically significant taper fretting and
corrosion. Those factors include an increased usage of large diameter
(36 mm) heads, reduced femoral neck and taper dimensions, greater
variability in taper assembly with smaller incision surgery, and
higher taper stresses due to increased patient weight and/or physical
activity. Additional studies are needed to determine the role of
taper assembly compared with design, manufacturing and other implant
variables. Cite this article:
Since 1996 more than one million metal-on-metal
articulations have been implanted worldwide. Adverse reactions to
metal debris are escalating. Here we present an algorithmic approach
to patient management. The general approach to all arthroplasty
patients returning for follow-up begins with a detailed history,
querying for pain, discomfort or compromise of function. Symptomatic
patients should be evaluated for intra-articular and extra-articular
causes of pain. In large head MoM arthroplasty, aseptic loosening
may be the source of pain and is frequently difficult to diagnose.
Sepsis should be ruled out as a source of pain. Plain radiographs
are evaluated to rule out loosening and osteolysis, and assess component
position. Laboratory evaluation commences with erythrocyte sedimentation
rate and C-reactive protein, which may be elevated. Serum metal
ions should be assessed by an approved facility. Aspiration, with
manual cell count and culture/sensitivity should be performed, with
cloudy to creamy fluid with predominance of monocytes often indicative
of failure. Imaging should include ultrasound or metal artifact
reduction sequence MRI, specifically evaluating for fluid collections
and/or masses about the hip. If adverse reaction to metal debris
is suspected then revision to metal or ceramic-on-polyethylene is indicated
and can be successful. Delay may be associated with extensive soft-tissue
damage and hence poor clinical outcome.
With the development of systems of trauma care the management of pelvic disruption has evolved and has become increasingly refined. The goal is to achieve an anatomical reduction and stable fixation of the fracture. This requires adequate visualisation for reduction of the fracture and the placement of fixation. Despite the advances in surgical approach and technique, the functional outcomes do not always produce the desired result. New methods of percutaneous treatment in conjunction with innovative computer-based imaging have evolved in an attempt to overcome the existing difficulties. This paper presents an overview of the technical aspects of percutaneous surgery of the pelvis and acetabulum.
The operative treatment of displaced fractures of the tibial plateau is challenging. Recent developments in the techniques of internal fixation, including the development of locked plating and minimal invasive techniques have changed the treatment of these fractures. We review current surgical approaches and techniques, improved devices for internal fixation and the clinical outcome after utilisation of new methods for locked plating.
Most proximal humeral fractures are stable injuries of the ageing population, and can be successfully treated non-operatively. The management of the smaller number of more complex displaced fractures is more controversial and new fixation techniques have greatly increased the range of fractures that may benefit from surgery. This article explores current concepts in the classification and clinical aspects of these injuries, reviewing the indications, innovations and outcomes for the most common methods of treatment.
A review of the current literature shows that there is a lack of consensus regarding the treatment of spondylolysis and spondylolisthesis in children and adolescents. Most of the views and recommendations provided in various reports are weakly supported by evidence. There is a limited amount of information about the natural history of the condition, making it difficult to compare the effectiveness of various conservative and operative treatments. This systematic review summarises the current knowledge on spondylolysis and spondylolisthesis and attempts to present a rational approach to the evaluation and management of this condition in children and adolescents.
The dismal outcome of tuberculosis of the spine in the pre-antibiotic era has improved significantly because of the use of potent antitubercular drugs, modern diagnostic aids and advances in surgical management. MRI allows the diagnosis of a tuberculous lesion, with a sensitivity of 100% and specificity of 88%, well before deformity develops. Neurological deficit and deformity are the worst complications of spinal tuberculosis. Patients treated conservatively show an increase in deformity of about 15°. In children, a kyphosis continues to increase with growth even after the lesion has healed. Tuberculosis of the spine is a medical disease which is not primarily treated surgically, but operation is required to prevent and treat the complications. Panvertebral lesions, therapeutically refractory disease, severe kyphosis, a developing neurological deficit, lack of improvement or deterioration are indications for surgery. Patients who present with a kyphosis of 60° or more, or one which is likely to progress, require anterior decompression, posterior shortening, posterior instrumented stabilisation and anterior and posterior bone grafting in the active stage of the disease. Late-onset paraplegia is best prevented rather than treated. The awareness and suspicion of an atypical presentation of spinal tuberculosis should be high in order to obtain a good outcome. Therapeutically refractory cases of tuberculosis of the spine are increasing in association with the presence of HIV and multidrug-resistant tuberculosis.
The management of patients with a painful total knee replacement requires careful assessment and a stepwise approach in order to diagnose the underlying pathology accurately. The management should include a multidisciplinary approach to the patient’s pain as well as addressing the underlying aetiology. Pain should be treated with appropriate analgesia, according to the analgesic ladder of the World Health Organisation. Special measures should be taken to identify and to treat any neuropathic pain. There are a number of intrinsic and extrinsic causes of a painful knee replacement which should be identified and treated early. Patients with unexplained pain and without any recognised pathology should be treated conservatively since they may improve over a period of time and rarely do so after a revision operation.
The management of bone loss in revision replacement of the knee remains a challenge despite an array of options available to the surgeon. Bone loss may occur as a result of the original disease, the design of the prosthesis, the mechanism of failure or technical error at initial surgery. The aim of revision surgery is to relieve pain and improve function while addressing the mechanism of failure in order to reconstruct a stable platform with transfer of load to the host bone. Methods of reconstruction include the use of cement, modular metal augmentation of prostheses, custom-made, tumour-type or hinged implants and bone grafting. The published results of the surgical techniques are summarised and a guide for the management of bone defects in revision surgery of the knee is presented.
Although mechanical stabilisation has been a hallmark of orthopaedic surgical management, orthobiologics are now playing an increasing role. Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline. The platelet α granules are rich in growth factors that play an essential role in tissue healing, such as transforming growth factor-β, vascular endothelial growth factor, and platelet-derived growth factor. PRP is used in various surgical fields to enhance bone and soft-tissue healing by placing supraphysiological concentrations of autologous platelets at the site of tissue damage. The easily obtainable PRP and its possible beneficial outcome hold promise for new regenerative treatment approaches. The aim of this literature review was to describe the bioactivities of PRP, to elucidate the different techniques for PRP preparation, to review animal and human studies, to evaluate the evidence regarding the use of PRP in trauma and orthopaedic surgery, to clarify risks, and to provide guidance for future research.