Fractures of the distal femur can be challenging to manage and
are on the increase in the elderly osteoporotic population. Management
with casting or bracing can unacceptably limit a patient’s ability
to bear weight, but historically, operative fixation has been associated
with a high rate of re-operation. In this study, we describe the outcomes
of fixation using modern implants within a strategy of early return
to function. All patients treated at our centre with lateral distal femoral
locking plates (LDFLP) between 2009 and 2014 were identified. Fracture
classification and operative information including weight-bearing
status, rates of union, re-operation, failure of implants and mortality
rate, were recorded.Aims
Patients and Methods
Percutaneous stabilisation of tibial fractures by locking plates has become an accepted form of osteosynthesis. A potential disadvantage of this technique is the risk of damage to the neurovascular bundles in the anterior and peroneal compartments. Our aim in this anatomical study was to examine the relationship of the deep peroneal nerve to a percutaneously-inserted Less Invasive Stabilisation System tibial plate in the lower limbs of 18 cadavers. Screws were inserted through stab incisions. The neurovascular bundle was dissected to reveal its relationship to the plate and screws. In all cases, the deep peroneal nerve was in direct contact with the plate between the 11th and the 13th holes. In ten specimens the nerve crossed superficial to the plate, in six it was interposed between the plate and the bone and in the remaining two specimens it coursed at the edge of the plate. Percutaneous insertion of plates with more than ten holes is not recommended because of the risk of injury to the neurovascular structures. When longer plates are required we suggest distal exposure so that the neurovascular bundle may be displayed and protected.
We investigated a new intramedullary locking
nail that allows the distal interlocking screws to be locked to
the nail. We compared fixation using this new implant with fixation
using either a conventional nail or a locking plate in a laboratory
simulation of an osteoporotic fracture of the distal femur. A total
of 15 human cadaver femora were used to simulate an AO 33-A3 fracture
pattern. Paired specimens compared fixation using either a locking
or non-locking retrograde nail, and using either a locking retrograde
nail or a locking plate. The constructs underwent cyclical loading
to simulate single-leg stance up to 125 000 cycles. Axial and torsional
stiffness and displacement, cycles to failure and modes of failure
were recorded for each specimen. When compared with locking plate
constructs, locking nail constructs had significantly longer mean
fatigue life (75 800 cycles ( The new locking retrograde femoral nail showed better stiffness
and fatigue life than locking plates, and superior fatigue life
to non-locking nails, which may be advantageous in elderly patients. Cite this article: