Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1476 - 1478
1 Dec 2019
Bayliss L Jones LD

This annotation briefly reviews the history of artificial intelligence and machine learning in health care and orthopaedics, and considers the role it will have in the future, particularly with reference to statistical analyses involving large datasets. Cite this article: Bone Joint J 2019;101-B:1476–1478


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 911 - 914
1 Aug 2022
Prijs J Liao Z Ashkani-Esfahani S Olczak J Gordon M Jayakumar P Jutte PC Jaarsma RL IJpma FFA Doornberg JN

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’). Cite this article: Bone Joint J 2022;104-B(8):911–914


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1754 - 1758
1 Dec 2021
Farrow L Zhong M Ashcroft GP Anderson L Meek RMD

There is increasing popularity in the use of artificial intelligence and machine-learning techniques to provide diagnostic and prognostic models for various aspects of Trauma & Orthopaedic surgery. However, correct interpretation of these models is difficult for those without specific knowledge of computing or health data science methodology. Lack of current reporting standards leads to the potential for significant heterogeneity in the design and quality of published studies. We provide an overview of machine-learning techniques for the lay individual, including key terminology and best practice reporting guidelines.

Cite this article: Bone Joint J 2021;103-B(12):1754–1758.


The Bone & Joint Journal
Vol. 106-B, Issue 12 | Pages 1363 - 1368
1 Dec 2024
Chen DB Wood JA Griffiths-Jones W Bellemans J Haddad FS MacDessi SJ

As advancements in total knee arthroplasty progress at an exciting pace, two areas are of special interest, as they directly impact implant design and surgical decision making. Knee morphometry considers the three-dimensional shape of the articulating surfaces within the knee joint, and knee phenotyping provides the ability to categorize alignment into practical groupings that can be used in both clinical and research settings. This annotation discusses the details of these concepts, and the ways in which they are helping us better understand the individual subtleties of each patient’s knee.

Cite this article: Bone Joint J 2024;106-B(12):1363–1368.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1104 - 1109
1 Oct 2022
Hansjee S Giebaly DE Shaarani SR Haddad FS

We aim to explore the potential technologies for monitoring and assessment of patients undergoing arthroplasty by examining selected literature focusing on the technology currently available and reflecting on possible future development and application. The reviewed literature indicates a large variety of different hardware and software, widely available and used in a limited manner, to assess patients’ performance. There are extensive opportunities to enhance and integrate the systems which are already in existence to develop patient-specific pathways for rehabilitation.

Cite this article: Bone Joint J 2022;104-B(10):1104–1109.