Delayed postoperative inoculation of orthopaedic implants with persistent wound drainage or bacterial seeding of a haematoma can result in periprosthetic joint infection (PJI). The aim of this in vivo study was to compare the efficacy of vancomycin powder with vancomycin-eluting calcium sulphate beads in preventing PJI due to delayed inoculation. A mouse model of PJI of the knee was used. Mice were randomized into groups with intervention at the time of surgery (postoperative day (POD) 0): a sterile control (SC; n = 6); infected control (IC; n = 15); systemic vancomycin (SV; n = 9); vancomycin powder (VP; n = 21); and vancomycin bead (VB; n = 19) groups. Delayed inoculation was introduced during an arthrotomy on POD 7 with 1 × 105 colony-forming units (CFUs) of a bioluminescent strain of Aims
Methods
The number of arthroplasties being undertaken
is expected to grow year on year, and periprosthetic joint infections will
be an increasing socioeconomic burden. The challenge to prevent
and eradicate these infections has resulted in the emergence of
several new strategies, which are discussed in this review. Cite this article:
The use of robots in orthopaedic surgery is an
emerging field that is gaining momentum. It has the potential for significant
improvements in surgical planning, accuracy of component implantation
and patient safety. Advocates of robot-assisted systems describe
better patient outcomes through improved pre-operative planning
and enhanced execution of surgery. However, costs, limited availability,
a lack of evidence regarding the efficiency and safety of such systems
and an absence of long-term high-impact studies have restricted
the widespread implementation of these systems. We have reviewed
the literature on the efficacy, safety and current understanding of
the use of robotics in orthopaedics. Cite this article:
The contemporary practice of orthopaedic surgery
requires an evidence-based approach to support all medical and surgical
interventions. In this essay, the author expresses a forthright,
personal and somewhat prejudiced appeal to retain the legitimacy
of clinical decision making in conditions that are rare, contain
multiple variables, have a solution that generally works or has
an unpredictable course. Cite this article:
Femoral lengthening using the Intramedullary Skeletal Kinetic Distractor is a new technique. However, with intramedullary distraction the surgeon has less control over the lengthening process. Therefore, 33 femora lengthened with this device were assessed to evaluate the effect of operative variables under the surgeon’s control on the course of lengthening. The desired lengthening was achieved in 32 of 33 limbs. Problems encountered included difficulty in achieving length in eight femora (24%) and uncontrolled lengthening in seven (21%). Uncontrolled lengthening was more likely if the osteotomy was placed with less than 80 mm of the thick portion of the nail in the distal fragment (p = 0.052), and a failure to lengthen was more likely if there was over 125 mm in the distal fragment (p = 0.008). The latter problem was reduced with over-reaming by 2.5 mm to 3 mm. Previous intramedullary nailing also predisposed to uncontrolled lengthening (p = 0.042), and these patients required less reaming. Using the Intramedullary Skeletal Kinetic Distractor, good outcomes were obtained; problems were minimised by optimising the position of the osteotomy and the amount of over-reaming performed.
We report the results of six trauma and orthopaedic
projects to Kenya in the last three years. The aims are to deliver both
a trauma service and teaching within two hospitals; one a district
hospital near Mount Kenya in Nanyuki, the other the largest public
hospital in Kenya in Mombasa. The Kenya Orthopaedic Project team
consists of a wide range of multidisciplinary professionals that
allows the experience to be shared across those specialties. A follow-up
clinic is held three months after each mission to review the patients.
To our knowledge there are no reported outcomes in the literature
for similar projects. A total of 211 operations have been performed and 400 patients
seen during the projects. Most cases were fractures of the lower
limb; we have been able to follow up 163 patients (77%) who underwent
surgical treatment. We reflect on the results so far and discuss
potential improvements for future missions.
Nanotechnology is the study, production and controlled
manipulation of materials with a grain size <
100 nm. At this
level, the laws of classical mechanics fall away and those of quantum
mechanics take over, resulting in unique behaviour of matter in
terms of melting point, conductivity and reactivity. Additionally,
and likely more significant, as grain size decreases, the ratio
of surface area to volume drastically increases, allowing for greater interaction
between implants and the surrounding cellular environment. This
favourable increase in surface area plays an important role in mesenchymal
cell differentiation and ultimately bone–implant interactions. Basic science and translational research have revealed important
potential applications for nanotechnology in orthopaedic surgery,
particularly with regard to improving the interaction between implants
and host bone. Nanophase materials more closely match the architecture
of native trabecular bone, thereby greatly improving the osseo-integration
of orthopaedic implants. Nanophase-coated prostheses can also reduce
bacterial adhesion more than conventionally surfaced prostheses.
Nanophase selenium has shown great promise when used for tumour
reconstructions, as has nanophase silver in the management of traumatic
wounds. Nanophase silver may significantly improve healing of peripheral
nerve injuries, and nanophase gold has powerful anti-inflammatory
effects on tendon inflammation. Considerable advances must be made in our understanding of the
potential health risks of production, implantation and wear patterns
of nanophase devices before they are approved for clinical use.
Their potential, however, is considerable, and is likely to benefit
us all in the future. Cite this article:
The ability of mesenchymal stem cells (MSCs)
to differentiate Despite their increasing application in clinical trials, the
origin and role of MSCs in the development, repair and regeneration
of organs have remained unclear. Until recently, MSCs could only
be isolated in a process that requires culture in a laboratory;
these cells were being used for tissue engineering without understanding
their native location and function. MSCs isolated in this indirect
way have been used in clinical trials and remain the reference standard
cellular substrate for musculoskeletal engineering. The therapeutic
use of autologous MSCs is currently limited by the need for In this annotation we provide an update on the recent developments
in the understanding of the identity of MSCs within tissues and
outline how this may affect their use in orthopaedic surgery in
the future. Cite this article:
The use of ultrasound-guided wire localisation of lesions is not well described in the orthopaedic literature. We describe a case of an impalpable schwannoma of the femoral nerve and another of sacroiliitis with an associated pelvic abscess. In both, surgical localisation was difficult. Peri-operative ultrasound-guided wire localisation was used to guide surgery and minimise tissue damage, thereby optimising the results and recovery of the patient.
We present a retrospective review of a single-surgeon series of 30 consecutive lengthenings in 27 patients with congenital short femur using the Ilizarov technique performed between 1994 and 2005. The mean increase in length was 5.8 cm/18.65% (3.3 to 10.4, 9.7% to 48.8%), with a mean time in the frame of 223 days (75 to 363). By changing from a distal to a proximal osteotomy for lengthening, the mean range of knee movement was significantly increased from 98.1° to 124.2° (p = 0.041) and there was a trend towards a reduced requirement for quadricepsplasty, although this was not statistically significant (p = 0.07). The overall incidence of regenerate deformation or fracture requiring open reduction and internal fixation was similar in the distal and proximal osteotomy groups (56.7% and 53.8%, respectively). However, in the proximal osteotomy group, pre-placement of a Rush nail reduced this rate from 100% without a nail to 0% with a nail (p <
0.001). When comparing a distal osteotomy with a proximal one over a Rush nail for lengthening, there was a significant decrease in fracture rate from 58.8% to 0% (p = 0.043). We recommend that in this group of patients lengthening of the femur with an Ilizarov construct be carried out through a proximal osteotomy over a Rush nail. Lengthening should also be limited to a maximum of 6 cm during one treatment, or 20% of the original length of the femur, in order to reduce the risk of complications.
Surgeons need to be able to measure angles and distances in three dimensions in the planning and assessment of knee replacement. Computed tomography (CT) offers the accuracy needed but involves greater radiation exposure to patients than traditional long-leg standing radiographs, which give very little information outside the plane of the image. There is considerable variation in CT radiation doses between research centres, scanning protocols and individual scanners, and ethics committees are rightly demanding more consistency in this area. By refining the CT scanning protocol we have reduced the effective radiation dose received by the patient down to the equivalent of one long-leg standing radiograph. Because of this, it will be more acceptable to obtain the three-dimensional data set produced by CT scanning. Surgeons will be able to document the impact of implant position on outcome with greater precision.
The aim of this study was to re-assess whether the use of a ‘one-knife technique’ can be considered as safe as the alternative practice of using separate skin and inside knives for elective orthopaedic surgery. A total of 609 knife blades from 203 elective orthopaedic operations, with equal numbers of skin, inside and control blades, were cultured using direct and enrichment media. We found 31 skin blades (15.3%), 22 inside blades (10.8%), and 13 control blades (6.4%) gave bacterial growth. Of the 31 contaminated skin blades only three (9.7%) had growth of the same organism as found on the corresponding inside blade. It is not known whether contamination of deeper layers in the remaining 90% was prevented by changing the knife after the skin incision. The organisms cultured were predominantly coagulase-negative staphylococci and proprionibacterium species; both are known to be the major culprits in peri-prosthetic infection. Our study suggests that the use of separate skin and inside knives should be maintained as good medical practice, since the cost of a single deep infection in human and financial terms can be considerable.