We conducted a retrospective study to investigate the effect of femoral bowing on the placement of components in total knee replacement (TKR), with regard to its effect on reestablishing the correct mechanical axis, as we hypothesised that computer-assisted total knee replacement (CAS-TKR) would produce more accurate alignment than conventional TKR. Between January 2006 and December 2009, 212 patients (306 knees) underwent TKR. The conventional TKR was compared with CAS-TKR for accuracy of placement of the components and post-operative alignment, as determined by five radiological measurements. There were significant differences in the reconstructed mechanical axes between the bowed and the non-bowed group after conventional TKR (176.2° ( For patients with significant femoral bowing, the reconstructed mechanical axes were significantly closer to normal in the CAS group than in the conventional group (179.2° (
The role of modular tibial implants in total knee replacement is not fully defined. We performed a prospective randomised controlled clinical trial using radiostereophotogrammetric analysis to compare the performance of an all-polyethylene tibia with a metal-backed cruciate-retaining condylar design, PFC-∑ total knee replacement for up to 24 months. There were 51 patients who were randomised into two treatment groups. There were 10 subsequent withdrawals, leaving 21 all-polyethylene and 20 metal-backed tibial implants. No patient was lost to follow-up. There were no significant demographic differences between the groups. At two years one metal-backed implant showed migration >
1 mm, but no polyethylene implant reached this level. There was a significant increase in the SF-12 and Oxford knee scores after operation in both groups. In an uncomplicated primary total knee replacement the all-polyethylene PFC-∑ tibial prosthesis showed no statistical difference in migration from that of the metal-backed counterpart. There was no difference in the clinical results as assessed by the SF-12, the Oxford knee score, alignment or range of movement at 24 months, although these assessment measures were not statistically powered in this study.
We compared peri-prosthetic bone mineral density between identical cemented and cementless LCS rotating platform total knee arthroplasties. Two matched cohorts had dual energy x-ray absorptiometry scans two years post-operatively using a modified validated densitometric analysis protocol, to assess peri-prosthetic bone mineral density. The knee that was not operated on was also scanned to enable the calculation of a relative bone mineral density difference. Oxford Knee and American Knee Society scores were comparable in the two cohorts. Statistical analysis revealed no significant difference in absolute, or relative peri-prosthetic bone mineral density with respect to the method of fixation. However, the femoral peri-prosthetic bone mineral density and relative bone mineral density difference were significantly decreased, irrespective of the method of fixation, particularly in the anterior distal portion of the femur, with a mean reduction in relative bone mineral density difference of 27%. There was no difference in clinical outcome between the cemented and cementless LCS total knee arthroplasty. However, both produce stress-shielding around the femoral implants. This leads us to question the use of more expensive cementless total knee components.