A higher failure rate has been reported in haematogenous periprosthetic joint infection (PJI) compared to non-haematogenous PJI. The reason for this difference is unknown. We investigated the outcome of haematogenous and non-haematogenous PJI to analyze the risk factors for failure in both groups of patients. Episodes of knee or hip PJI (defined by the European Bone and Joint Infection Society criteria) treated at our institution between January 2015 and October 2020 were included in a retrospective PJI cohort. Episodes with a follow-up of > one year were stratified by route of infection into haematogenous and non-haematogenous PJI. Probability of failure-free survival was estimated using the Kaplan-Meier method, and compared between groups using log-rank test. Univariate and multivariate analysis was applied to assess risk factors for failure.Aims
Methods
We investigated the efficacy and safety profile of commonly used venous thromboembolism (VTE) prophylaxis agents following hip and knee arthroplasty. A systematic search of PubMed, Embase, Cochrane Library, Web of Science, and OrthoSearch was performed. Prophylaxis agents investigated were aspirin (< 325 mg and ≥ 325 mg daily), enoxaparin, dalteparin, fondaparinux, unfractionated heparin, warfarin, rivaroxaban, apixaban, and dabigatran. The primary efficacy outcome of interest was the risk of VTE, whereas the primary safety outcomes of interest were the risk of major bleeding events (MBE) and wound complications (WC). VTE was defined as the confirmed diagnosis of any deep vein thrombosis and/or pulmonary embolism. Network meta-analysis combining direct and indirect evidence was performed. Cluster rank analysis using the surface under cumulative ranking (SUCRA) was applied to compare each intervention group, weighing safety and efficacy outcomes.Aims
Methods
Periprosthetic joint infections (PJIs) and fracture-related infections (FRIs) are associated with a significant risk of adverse events. However, there is a paucity of data on cardiac complications following revision surgery for PJI and FRI and how they impact overall mortality. Therefore, this study aimed to investigate the risk of perioperative myocardial injury (PMI) and mortality in this patient cohort. We prospectively included consecutive patients at high cardiovascular risk (defined as age ≥ 45 years with pre-existing coronary, peripheral, or cerebrovascular artery disease, or any patient aged ≥ 65 years, plus a postoperative hospital stay of > 24 hours) undergoing septic or aseptic major orthopaedic surgery between July 2014 and October 2016. All patients received a systematic screening to reliably detect PMI, using serial measurements of high-sensitivity cardiac troponin T. All-cause mortality was assessed at one year. Multivariable logistic regression models were applied to compare incidence of PMI and mortality between patients undergoing septic revision surgery for PJI or FRI, and patients receiving aseptic major bone and joint surgery.Aims
Methods
Valgus knee deformity can present a number of
unique surgical challenges for the total knee arthroplasty (TKA)
surgeon. Understanding the typical patterns of bone and soft-tissue pathology
in the valgus arthritic knee is critical for appropriate surgical
planning. This review aims to provide the knee arthroplasty surgeon
with an understanding of surgical management strategies for the
treatment of valgus knee arthritis. Lateral femoral and tibial deficiencies, contracted lateral soft
tissues, attenuated medial soft tissues, and multiplanar deformities
may all be present in the valgus arthritic knee. A number of classifications
have been reported in order to guide surgical management, and a variety
of surgical strategies have been described with satisfactory clinical
results. Depending on the severity of the deformity, a variety of
TKA implant designs may be appropriate for use. Regardless of an operating surgeon’s preferred surgical strategy,
adherence to a step-wise approach to deformity correction is advised. Cite this article: