Aims. The aim of this study was to analyze the true costs associated with preoperative CT scans performed for robotic-assisted total knee arthroplasty (RATKA)
We have investigated the benefits of patient
specific instrument guides, applied to osteotomies around the knee. Single,
dual and triple planar osteotomies were performed on tibias or femurs
in 14 subjects. In all patients, a detailed pre-operative
Aims. Robotic-assisted total knee arthroplasty (RA-TKA) is theoretically more accurate for component positioning than TKA performed with mechanical instruments (M-TKA). Furthermore, the ability to incorporate soft-tissue laxity data into the
Aims. To investigate the impact of consecutive perioperative care transitions on in-hospital recovery of patients who had primary total knee arthroplasty (TKA) over an 11-year period. Methods. This observational cohort study used electronic health record data from all patients undergoing preoperative screening for primary TKA at a Northern Netherlands hospital between 2009 and 2020. In this timeframe, three perioperative care transitions were divided into four periods: Baseline care (Joint Care, n = 171; May 2009 to August 2010), Function-tailored (n = 404; September 2010 to October 2013), Fast-track (n = 721; November 2013 to May 2018), and Prehabilitation (n = 601; June 2018 to December 2020). In-hospital recovery was measured using inpatient recovery of activities (IROA), length of stay (LOS), and discharge to preoperative living situation (PLS). Multivariable regression models were used to analyze the impact of each perioperative care transition on in-hospital recovery. Results. The four periods analyzed involved 1,853 patients (65.9% female (1,221/1,853); mean age 70.1 years (SD 9.0)). IROA improved significantly with each transition: Function-tailored (0.9 days; p < 0.001 (95% confidence interval (CI) -0.32 to -0.15)), Fast-track (0.6 days; p < 0.001 (95% CI -0.25 to -0.16)), and Prehabilitation (0.4 days; p < 0.001 (95% CI -0.18 to -0.10)). LOS decreased significantly in Function-tailored (1.1 days; p = 0.001 (95% CI -0.30 to -0.06)), Fast-track (0.6 days; p < 0.001 (95% CI -0.21 to -0.05)), and Prehabilitation (0.6 days; p < 0.001 (95%CI -0.27 to -0.11)). Discharge to PLS increased in Function-tailored (77%), Fast-track (91.6%), and Prehabilitation (92.6%). Post-hoc analysis indicated a significant increase after the transition to the Fast-track period (p < 0.001 (95% CI 3.19 to 8.00)). Conclusion. This study highlights the positive impact of different perioperative care procedures on in-hospital recovery of patients undergoing primary TKA. Assessing functional recovery, LOS, and discharge towards PLS consistently, provides hospitals with valuable insights into postoperative recovery. This can potentially aid
Aims. The objective of this study is to assess the use of ultrasound (US) as a radiation-free imaging modality to reconstruct 3D anatomy of the knee for use in preoperative templating in knee arthroplasty. Methods. Using an US system, which is fitted with an electromagnetic (EM) tracker that is integrated into the US probe, allows 3D tracking of the probe, femur, and tibia. The raw US radiofrequency (RF) signals are acquired and, using real-time signal processing, bone boundaries are extracted. Bone boundaries and the tracking information are fused in a 3D point cloud for the femur and tibia. Using a statistical shaping model, the patient-specific surface is reconstructed by optimizing bone geometry to match the point clouds. An accuracy analysis was conducted for 17 cadavers by comparing the 3D US models with those created using CT. US scans from 15 users were compared in order to examine the effect of operator variability on the output. Results. The results revealed that the US bone models were accurate compared with the CT models (root mean squared error (RM)S: femur, 1.07 mm (SD 0.15); tibia, 1.02 mm (SD 0.13). Additionally, femoral landmarking proved to be accurate (transepicondylar axis: 1.07° (SD 0.65°); posterior condylar axis: 0.73° (SD 0.41°); distal condylar axis: 0.96° (SD 0.89°); medial anteroposterior (AP): 1.22 mm (SD 0.69); lateral AP: 1.21 mm (SD 1.02)). Tibial landmarking errors were slightly higher (posterior slope axis: 1.92° (SD 1.31°); and tubercle axis: 1.91° (SD 1.24°)). For implant sizing, 90% of the femora and 60% of the tibiae were sized correctly, while the remainder were only one size different from the required implant size. No difference was observed between moderate and skilled users. Conclusion. The 3D US bone models were proven to be closely matched compared with CT and suitable for preoperative
Aims. The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. Methods. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the
Aims. Neither a surgeon’s intraoperative impression nor the parameters of computer navigation have been shown to be predictive of the outcomes following total knee arthroplasty (TKA). The aim of this study was to determine whether a surgeon, with robotic assistance, can predict the outcome as assessed using the Knee Injury and Osteoarthritis Outcome Score (KOOS) for pain (KPS), one year postoperatively, and establish what factors correlate with poor KOOS scores in a well-aligned and balanced TKA. Methods. A total of 134 consecutive patients who underwent TKA using a dynamic ligament tensioning robotic system with a tibia first resection technique and a cruciate sacrificing ultracongruent TKA system were enrolled into a prospective study. Each TKA was graded based on the final mediolateral ligament balance at 10° and 90° of flexion: 1) < 1 mm difference in the thickness of the tibial insert and that which was
Robotic arm-assisted surgery offers accurate and reproducible guidance in component positioning and assessment of soft-tissue tensioning during knee arthroplasty, but the feasibility and early outcomes when using this technology for revision surgery remain unknown. The objective of this study was to compare the outcomes of robotic arm-assisted revision of unicompartmental knee arthroplasty (UKA) to total knee arthroplasty (TKA) versus primary robotic arm-assisted TKA at short-term follow-up. This prospective study included 16 patients undergoing robotic arm-assisted revision of UKA to TKA versus 35 matched patients receiving robotic arm-assisted primary TKA. In all study patients, the following data were recorded: operating time, polyethylene liner size, change in haemoglobin concentration (g/dl), length of inpatient stay, postoperative complications, and hip-knee-ankle (HKA) alignment. All procedures were performed using the principles of functional alignment. At most recent follow-up, range of motion (ROM), Forgotten Joint Score (FJS), and Oxford Knee Score (OKS) were collected. Mean follow-up time was 21 months (6 to 36).Aims
Methods
The primary aim was to assess whether robotic total knee arthroplasty (rTKA) had a greater early knee-specific outcome when compared to manual TKA (mTKA). Secondary aims were to assess whether rTKA was associated with improved expectation fulfilment, health-related quality of life (HRQoL), and patient satisfaction when compared to mTKA. A randomized controlled trial was undertaken, and patients were randomized to either mTKA or rTKA. The primary objective was functional improvement at six months. Overall, 100 patients were randomized, 50 to each group, of whom 46 rTKA and 41 mTKA patients were available for review at six months following surgery. There were no differences between the two groups.Aims
Methods
Aims. Two-stage exchange arthroplasty is the most common definitive treatment for prosthetic joint infection (PJI) in the USA. Complications that occur during treatment are often not considered. The purpose of this study was to analyze complications in patients undergoing two-stage exchange for infected total knee arthroplasty (TKA) and determine when they occur. Methods. We analyzed all patients that underwent two-stage exchange arthroplasty for treatment of PJI of the knee from January 2010 to December 2018 at a single institution. We categorized complications as medical versus surgical. The intervals for complications were divided into: interstage; early post-reimplantation (three months); and late post-reimplantation (three months to minimum one year). Minimum follow-up was one year. In total, 134 patients underwent a first stage of a two-stage exchange. There were 69 males and 65 females with an mean age at first stage surgery of 67 years (37 to 89). Success was based on the new Musculoskeletal Infection Society (MSIS) definition of success reporting. Results. Overall, 70 (52%) patients experienced a complication during the
Aims. Our objective is to describe our early and mid-term results with the use of a new simple primary knee prosthesis as an articulating spacer in
Aims. Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties. Methods. Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosis. 1. (n = 8) underwent an MRI scan with advanced metal suppression (Slice Encoding for Metal Artefact Correction, SEMAC) with gadolinium contrast. Fibrotic tissue (low intensity on T1 and T2, low-moderate post-contrast enhancement) was quantified (presence and tissue thickness) in six compartments: supra/infrapatella, medial/lateral gutters, and posterior medial/lateral. Results. Fibrotic tissue was identified in all patients studied. However, tissue was significantly thicker in fibrotic patients (4.4 mm ± 0.2 mm) versus non-fibrotic (2.5 mm ± 0.4 mm) and normal TKAs (1.9 mm ± 0.2 mm, p = < 0.05). Significant (> 4 mm thick) tissue was seen in 26/48 (54%) of compartments examined in the fibrotic group, compared with 17/30 (57%) non-fibrotic, and 10/66 (15%) normal TKAs. Although revision surgery did improve range of movement (ROM) in all fibrotic patients, clinically significant restriction remained post-surgery. Conclusion. Stiff TKAs contain intra-articular fibrotic tissue that is identifiable by MRI. Studies should evaluate whether MRI is useful for surgical
The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.Aims
Methods
Obtaining solid implant fixation is crucial in revision total knee arthroplasty (rTKA) to avoid aseptic loosening, a major reason for re-revision. This study aims to validate a novel grading system that quantifies implant fixation across three anatomical zones (epiphysis, metaphysis, diaphysis). Based on pre-, intra-, and postoperative assessments, the novel grading system allocates a quantitative score (0, 0.5, or 1 point) for the quality of fixation achieved in each anatomical zone. The criteria used by the algorithm to assign the score include the bone quality, the size of the bone defect, and the type of fixation used. A consecutive cohort of 245 patients undergoing rTKA from 2012 to 2018 were evaluated using the current novel scoring system and followed prospectively. In addition, 100 first-time revision cases were assessed radiologically from the original cohort and graded by three observers to evaluate the intra- and inter-rater reliability of the novel radiological grading system.Aims
Methods
Blood transfusion and postoperative anaemia are complications of total knee arthroplasty (TKA) that are associated with substantial healthcare costs, morbidity, and mortality. There are few data from large datasets on the risk factors for these complications. We retrospectively reviewed the records of TKA patients from a single tertiary care institution from February 2016 to December 2020. There were a total of 14,901 patients in this cohort with a mean age of 67.9 years (SD 9.2), and 5,575 patients (37.4%) were male. Outcomes included perioperative blood transfusion and postoperative anaemia, defined a priori as haemoglobin level < 10 g/dl measured on the first day postoperatively. In order to establish a preoperative haemoglobin cutoff, we investigated a preoperative haemoglobin level that would limit transfusion likelihood to ≤ 1% (13 g/dl) and postoperative anaemia likelihood to 4.1%. Risk factors were assessed through multivariable Poisson regression modelling with robust error variance.Aims
Methods
Periprosthetic fractures (PPFs) around the knee are challenging injuries. This study aims to describe the characteristics of knee PPFs and the impact of patient demographics, fracture types, and management modalities on in-hospital mortality. Using a multicentre study design, independent of registry data, we included adult patients sustaining a PPF around a knee arthroplasty between 1 January 2010 and 31 December 2019. Univariate, then multivariable, logistic regression analyses were performed to study the impact of patient, fracture, and treatment on mortality.Aims
Methods
The aim was to assess whether robotic-assisted total knee arthroplasty (rTKA) had greater knee-specific outcomes, improved fulfilment of expectations, health-related quality of life (HRQoL), and patient satisfaction when compared with manual TKA (mTKA). A randomized controlled trial was undertaken (May 2019 to December 2021), and patients were allocated to either mTKA or rTKA. A total of 100 patients were randomized, 50 to each group, of whom 43 rTKA and 38 mTKA patients were available for review at 12 months following surgery. There were no statistically significant preoperative differences between the groups. The minimal clinically important difference in the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score was defined as 7.5 points.Aims
Methods
The Coronal Plane Alignment of the Knee (CPAK) classification has been developed to predict individual variations in inherent knee alignment. The impact of preoperative and postoperative CPAK classification phenotype on the postoperative clinical outcomes of total knee arthroplasty (TKA) remains elusive. This study aimed to examine the effect of postoperative CPAK classification phenotypes (I to IX), and their pre- to postoperative changes on patient-reported outcome measures (PROMs). A questionnaire was administered to 340 patients (422 knees) who underwent primary TKA for osteoarthritis (OA) between September 2013 and June 2019. A total of 231 patients (284 knees) responded. The Knee Society Score 2011 (KSS 2011), Knee injury and Osteoarthritis Outcome Score-12 (KOOS-12), and Forgotten Joint Score-12 (FJS-12) were used to assess clinical outcomes. Using preoperative and postoperative anteroposterior full-leg radiographs, the arithmetic hip-knee-ankle angle (aHKA) and joint line obliquity (JLO) were calculated and classified based on the CPAK classification. To investigate the impact on PROMs, multivariable regression analyses using stepwise selection were conducted, considering factors such as age at surgery, time since surgery, BMI, sex, implant use, postoperative aHKA classification, JLO classification, and changes in aHKA and JLO classifications from preoperative to postoperative.Aims
Methods
The aim of this study was to perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted medial unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA). Ten-year follow-up of patients who were randomized to rUKA (n = 64) or mUKA (n = 65) was performed. Patients completed the EuroQol five-dimension health questionnaire preoperatively, at three months, and one, two, five, and ten years postoperatively, which was used to calculate quality-adjusted life years (QALY) gained and the incremental cost-effectiveness ratio (ICER). Costs for the index and additional surgery and healthcare costs were calculated.Aims
Methods
The aim of this study was to compare a bicruciate-retaining (BCR) total knee arthroplasty (TKA) with a posterior cruciate-retaining (CR) TKA design in terms of kinematics, measured using fluoroscopy and stability as micromotion using radiostereometric analysis (RSA). A total of 40 patients with end-stage osteoarthritis were included in this randomized controlled trial. All patients performed a step-up and lunge task in front of a monoplane fluoroscope one year postoperatively. Femorotibial contact point (CP) locations were determined at every flexion angle and compared between the groups. RSA images were taken at baseline, six weeks, three, six, 12, and 24 months postoperatively. Clinical and functional outcomes were compared postoperatively for two years.Aims
Methods