Periprosthetic joint infection (PJI) represents a complex challenge in orthopaedic surgery associated with substantial morbidity and healthcare expenditures. The debridement, antibiotics, and implant retention (DAIR) protocol is a viable treatment, offering several advantages over exchange arthroplasty. With the evolution of treatment strategies, considerable efforts have been directed towards enhancing the efficacy of DAIR, including the development of a phased debridement protocol for acute PJI management. This article provides an in-depth analysis of DAIR, presenting the outcomes of single-stage, two-stage, and repeated DAIR procedures. It delves into the challenges faced, including patient heterogeneity, pathogen identification, variability in surgical techniques, and antibiotics selection. Moreover, critical factors that influence the decision-making process between single- and two-stage DAIR protocols are addressed, including team composition, timing of the intervention, antibiotic regimens, and both anatomical and implant-related considerations. By providing a comprehensive overview of DAIR protocols and their clinical implications, this annotation aims to elucidate the advancements, challenges, and potential future directions in the application of DAIR for PJI management. It is intended to equip clinicians with the insights required to effectively navigate the complexities of implementing DAIR strategies, thereby facilitating informed decision-making for optimizing patient outcomes. Cite this article:
Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved. Cite this article:
The credibility and creativity of an author may be gauged by the number of scientific papers he or she has published, as well as the frequency of citations of a particular paper reflecting the impact of the data on the area of practice. The object of this study was to identify and analyse the qualities of the top 100 cited papers in orthopaedic surgery. The database of the Science Citation Index of the Institute for Scientific Information (1945 to 2008) was used. A total of 1490 papers were cited more than 100 times, with the top 100 being subjected to further analysis. The majority originated in the United States, followed by the United Kingdom. The top 100 papers were published in seven specific orthopaedic journals. Analysis of the most-cited orthopaedic papers allows us a unique insight into the qualitites, characteristics and clinical innovations required for a paper to attain ‘classic’ status.