Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 101 - 104
1 Jan 2016
Mullaji AB Shetty GM

Collateral ligament release is advocated in total knee arthroplasty (TKA) to deal with significant coronal plane deformities, but is also associated with significant disadvantages.

We describe steps to avoid release of the collateral (superficial medial and lateral collateral) ligaments during TKA in severely deformed knees, while correcting deformity and balancing the knee.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):101–4.


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 263 - 269
1 Feb 2014
Batta V Coathup MJ Parratt MT Pollock RC Aston WJ Cannon SR Skinner JA Briggs TW Blunn GW

We reviewed the outcome of 69 uncemented, custom-made, distal femoral endoprosthetic replacements performed in 69 patients between 1994 and 2006. There were 31 women and 38 men with a mean age at implantation of 16.5 years (5 to 37). All procedures were performed for primary malignant bone tumours of the distal femur. At a mean follow-up of 124.2 months (4 to 212), 53 patients were alive, with one patient lost to follow-up. All nine implants (13.0%) were revised due to aseptic loosening at a mean of 52 months (8 to 91); three implants (4.3%) were revised due to fracture of the shaft of the prosthesis and three patients (4.3%) had a peri-prosthetic fracture. Bone remodelling associated with periosteal cortical thinning adjacent to the uncemented intramedullary stem was seen in 24 patients but this did not predispose to failure. All aseptically loose implants in this series were diagnosed to be loose within the first five years.

The results from this study suggest that custom-made uncemented distal femur replacements have a higher rate of aseptic loosening compared to published results for this design when used with cemented fixation. Loosening of uncemented replacements occurs early indicating that initial fixation of the implant is crucial.

Cite this article: Bone Joint J 2014;96-B:263–9.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1271 - 1276
1 Sep 2012
Luyckx T Peeters T Vandenneucker H Victor J Bellemans J

Obtaining a balanced flexion gap with correct femoral component rotation is one of the prerequisites for a successful outcome after total knee replacement (TKR). Different techniques for achieving this have been described. In this study we prospectively compared gap-balancing versus measured resection in terms of reliability and accuracy for femoral component rotation in 96 primary TKRs performed in 96 patients using the Journey system. In 48 patients (18 men and 30 women) with a mean age of 65 years (45 to 85) a tensor device was used to determine rotation. In the second group of 48 patients (14 men and 34 women) with a mean age of 64 years (41 to 86), an ‘adapted’ measured resection technique was used, taking into account the native rotational geometry of the femur as measured on a pre-operative CT scan.

Both groups systematically reproduced a similar external rotation of the femoral component relative to the surgical transepicondylar axis: 2.4° (sd 2.5) in the gap-balancing group and 1.7° (sd 2.1) in the measured resection group (p = 0.134). Both gap-balancing and adapted measured resection techniques proved equally reliable and accurate in determining femoral component rotation after TKR. There was a tendency towards more external rotation in the gap-balancing group, but this difference was not statistically significant (p = 0.134). The number of outliers for our ‘adapted’ measured resection technique was much lower than reported in the literature.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 10 | Pages 1360 - 1365
1 Oct 2009
Sewell MD Spiegelberg BGI Hanna SA Aston WJS Meswania JM Blunn GW Henry C Cannon SR Briggs TWR

We describe the application of a non-invasive extendible endoprosthetic replacement in skeletally-mature patients undergoing revision for failed joint replacement with resultant limb-length inequality after malignant or non-malignant disease. This prosthesis was developed for tumour surgery in skeletally-immature patients but has now been adapted for use in revision procedures to reconstruct the joint or facilitate an arthrodesis, replace bony defects and allow limb length to be restored gradually in the post-operative period.

We record the short-term results in nine patients who have had this procedure after multiple previous reconstructive operations. In six, the initial reconstruction had been performed with either allograft or endoprosthetic replacement for neoplastic disease and in three for non-neoplastic disease. The essential components of the prosthesis are a magnetic disc, a gearbox and a drive screw which allows painless lengthening of the prosthesis using the principle of electromagnetic induction. The mean age of the patients was 37 years (18 to 68) with a mean follow-up of 34 months (12 to 62). They had previously undergone a mean of six (2 to 14) open procedures on the affected limb before revision with the non-invasive extendible endoprosthesis.

The mean length gained was 56 mm (19 to 107) requiring a mean of nine (3 to 20) lengthening episodes performed in the outpatient department. There was one case of recurrent infection after revision of a previously infected implant and one fracture of the prosthesis after a fall. No amputations were performed. Planned exchange of the prosthesis was required in three patients after attainment of the maximum lengthening capacity of the implant. There was no failure of the lengthening mechanism. The Mean Musculoskeletal Tumour Society rating score was 22 of 30 available points (18 to 28).

The use of a non-invasive extendible endoprosthesis in this manner provided patients with good functional results and restoration of leg-length equality, without the need for multiple open lengthening procedures.