Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 2 | Pages 271 - 277
1 Feb 2009
Toms AD Barker RL McClelland D Chua L Spencer-Jones R Kuiper J

The treatment of bony defects of the tibia at the time of revision total knee replacement is controversial. The place of compacted morsellised bone graft is becoming established, particularly in contained defects. It has previously been shown that the initial stability of impaction-grafted trays in the contained defects is equivalent to that of an uncemented primary knee replacement. However, there is little biomechanical evidence on which to base a decision in the treatment of uncontained defects. We undertook a laboratory-based biomechanical study comparing three methods of graft containment in segmental medial tibial defects and compared them with the use of a modular metal augment to bypass the defect. Using resin models of the proximal tibia with medial defects representing either 46% or 65% of the medial cortical rim, repair of the defect was accomplished using mesh, cement or a novel bag technique, after which impaction bone grafting was used to fill the contained defects and a tibial component was cemented in place. As a control, a cemented tibial component with modular metal augments was used in identical defects. All specimens were submitted to cyclical mechanical loading, during which cyclical and permanent tray displacement were determined. The results showed satisfactory stability with all the techniques except the bone bag method. Using metal augments gave the highest initial stability, but obviously lacked any potential for bone restoration


The Journal of Bone & Joint Surgery British Volume
Vol. 82-B, Issue 3 | Pages 436 - 444
1 Apr 2000
van Loon CJM de Waal Malefijt MC Buma P Stolk PWT Verdonschot N Tromp AM Huiskes R Barneveld A

The properties of impacted morsellised bone graft (MBG) in revision total knee arthroplasty (TKA) were studied in 12 horses. The left hind metatarsophalangeal joint was replaced by a human TKA. The horses were then randomly divided into graft and control groups. In the graft group, a unicondylar, lateral uncontained defect was created in the third metatarsal bone and reconstructed using autologous MBG before cementing the TKA. In the control group, a cemented TKA was implanted without the bone resection and grafting procedure. After four to eight months, the animals were killed and a biomechanical loading test was performed with a cyclic load equivalent to the horse’s body-weight to study mechanical stability. After removal of the prosthesis, the distal third metatarsal bone was studied radiologically, histologically and by quantitative and micro CT. Biomechanical testing showed that the differences in deformation between the graft and the control condyles were not significant for either elastic or time-dependent deformations. The differences in bone mineral density (BMD) between the graft and the control condyles were not significant. The BMD of the MBG was significantly lower than that in the other regions in the same limb. Micro CT showed a significant difference in the degree of anisotropy between the graft and host bone, even although the structure of the area of the MBG had trabecular orientation in the direction of the axial load. Histological analysis revealed that all the grafts were revascularised and completely incorporated into a new trabecular structure with few or no remnants of graft. Our study provides a basis for the clinical application of this technique with MBG in revision TKA


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 1 | Pages 179 - 185
1 Jan 2010
Väänänen P Pajamäki I Paakkala A Nurmi JT Pajamäki J

We used a biodegradable mesh to convert an acetabular defect into a contained defect in six patients at total hip replacement. Their mean age was 61 years (46 to 69). The mean follow-up was 32 months (19 to 50). Before clinical use, the strength retention and hydrolytic in vitro degradation properties of the implants were studied in the laboratory over a two-year period. A successful clinical outcome was determined by the radiological findings and the Harris hip score. All the patients had a satisfactory outcome and no mechanical failures or other complications were observed. No protrusion of any of the impacted grafts was observed beyond the mesh. According to our preliminary laboratory and clinical results the biodegradable mesh is suitable for augmenting uncontained acetabular defects in which the primary stability of the implanted acetabular component is provided by the host bone. In the case of defects of the acetabular floor this new application provides a safe method of preventing graft material from protruding excessively into the pelvis and the mesh seems to tolerate bone-impaction grafting in selected patients with primary and revision total hip replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 10 | Pages 1475 - 1479
1 Oct 2010
Gortzak Y Kandel R Deheshi B Werier J Turcotte RE Ferguson PC Wunder JS

Various chemicals are commonly used as adjuvant treatment to surgery for giant-cell tumour (GCT) of bone. The comparative effect of these solutions on the cells of GCT is not known. In this study we evaluated the cytotoxic effect of sterile water, 95% ethanol, 5% phenol, 3% hydrogen peroxide (H2O2) and 50% zinc chloride (ZnCI2) on GCT monolayer tumour cultures which were established from six patients. The DNA content, the metabolic activity and the viability of the cultured samples of tumour cells were assessed at various times up to 120 hours after their exposure to these solutions.

Equal cytotoxicity to the GCT monolayer culture was observed for 95% ethanol, 5% phenol, 3% H2O2 and 50% ZnCI2. The treated samples showed significant reductions in DNA content and metabolic activity 24 hours after treatment and this was sustained for up to 120 hours. The samples treated with sterile water showed an initial decline in DNA content and viability 24 hours after treatment, but the surviving cells were viable and had proliferated. No multinucleated cell formation was seen in these cultures.

These results suggest that the use of chemical adjuvants other than water could help improve local control in the treatment of GCT of bone.