The purpose of this study was to validate the diagnosis of periprosthetic
joint infection (PJI) in the Danish Hip Arthroplasty Register (DHR). We identified a cohort of patients from the DHR who had undergone
primary total hip arthroplasty (THA) since 1 January 2005 and followed
them until first-time revision, death, emigration or until 31 December
2012. Revision for PJI, as registered in the DHR, was validated against
a benchmark which included information from microbiology databases,
prescription registers, clinical biochemistry registers and clinical
records. We estimated the sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) for PJI in the DHR
alone and in the DHR when combined with microbiology databases.Aims
Patients and Methods
Arthroplasty registries are important for the
surveillance of joint replacements and the evaluation of outcome. Independent
validation of registry data ensures high quality. The ability for
orthopaedic implant retrieval centres to validate registry data
is not known. We analysed data from the National Joint Registry
for England, Wales and Northern Ireland (NJR) for primary metal-on-metal
hip arthroplasties performed between 2003 and 2013. Records were
linked to the London Implant Retrieval Centre (RC) for validation.
A total of 67 045 procedures on the NJR and 782 revised pairs of
components from the RC were included. We were able to link 476 procedures
(60.9%) recorded with the RC to the NJR successfully. However, 306
procedures (39.1%) could not be linked. The outcome recorded by the
NJR (as either revised, unrevised or death) for a primary procedure
was incorrect in 79 linked cases (16.6%). The rate of registry-retrieval
linkage and correct assignment of outcome code improved over time.
The rates of error for component reference numbers on the NJR were
as follows: femoral head category number 14/229 (5.0%); femoral head
batch number 13/232 (5.3%); acetabular component category number
2/293 (0.7%) and acetabular component batch number 24/347 (6.5%). Registry-retrieval linkage provided a novel means for the validation
of data, particularly for component fields. This study suggests
that NJR reports may underestimate rates of revision for many types
of metal-on-metal hip replacement. This is topical given the increasing
scope for NJR data. We recommend a system for continuous independent
evaluation of the quality and validity of NJR data. Cite this article:
There have been considerable recent advances in the understanding and management of femoroacetabular impingement and associated labral and chondral pathology. We have developed a classification system for acetabular chondral lesions. In our system, we use the six acetabular zones previously described by Ilizaliturri et al. The cartilage is then graded on a scale of 0 to 4 as follows: grade 0, normal articular cartilage lesions; grade 1, softening or wave sign; grade 2, cleavage lesion; grade 3, delamination; and grade 4, exposed bone. The site of the lesion is further classed as A, B or C based on whether the lesion is less than one-third of the distance from the acetabular rim to the cotyloid fossa, one-third to two-thirds of the same distance and greater than two-thirds of the distance, respectively. In order to validate the classification system, six surgeons graded ten video recordings of hip arthroscopy. Our findings showed a high intra-observer reliability of the classification system with an intraclass correlation coefficient of 0.81 and a high interobserver reliability with an intraclass correlation coefficient of 0.88. We have developed a simple reproducible classification system for lesions of the acetabular cartilage, which it is hoped will allow standardised documentation to be made of damage to the articular cartilage, particularly that associated with femoroacetabular impingement.
Aims. This paper describes the methodology, validation and reliability
of a new computer-assisted method which uses models of the patient’s
bones and the components to measure their migration and polyethylene
wear from radiographs after total hip arthroplasty (THA). Materials and Methods. Models of the patient’s acetabular and femoral component obtained
from the manufacturer and models of the patient’s pelvis and femur
built from a single computed tomography (CT) scan, are used by a
computer program to measure the migration of the components and
the penetration of the femoral head from anteroposterior and lateral radiographs
taken at follow-up visits. The program simulates the radiographic
setup and matches the position and orientation of the models to
outlines of the pelvis, the acetabular and femoral component, and
femur on radiographs. Changes in position and orientation reflect
the migration of the components and the penetration of the femoral
head.
We investigated patient characteristics and outcomes of Vancouver type B periprosthetic fractures treated with femoral component revision and/or osteosynthesis. The study utilized data from the Swedish Hip Arthroplasty Register (SHAR) and information from patient records. We included all primary total hip arthroplasties (THAs) performed in Sweden since 1979, and undergoing further surgery due to Vancouver type B periprosthetic femoral fracture between 2001 and 2011. The primary outcome measure was any further reoperation between 2001 and 2013. Cross-referencing with the National Patient Register was performed in two stages, in order to identify all surgical procedures not recorded on the SHAR.Aims
Patients and Methods
The National Joint Registry for England, Wales and Northern Ireland
(NJR) has extended its scope to report on hospital, surgeon and
implant performance. Data linkage of the NJR to the London Implant
Retrieval Centre (LIRC) has previously evaluated data quality for
hip primary procedures, but did not assess revision records. We analysed metal-on-metal hip revision procedures performed
between 2003 and 2013. A total of 69 929 revision procedures from
the NJR and 929 revised pairs of components from the LIRC were included.Aims
Methods
Noise generation has been reported with ceramic-on-ceramic
articulations in total hip replacement (THR). This study evaluated
208 consecutive Delta Motion THRs at a mean follow-up of 21 months
(12 to 35). There were 141 women and 67 men with a mean age of 59
years (22 to 84). Patients were reviewed clinically and radiologically,
and the incidence of noise was determined using a newly described
assessment method. Noise production was examined against range of
movement, ligamentous laxity, patient-reported outcome scores, activity
level and orientation of the acetabular component. There were 143
silent hips (69%), 22 (11%) with noises other than squeaking, 17
(8%) with unreproducible squeaking and 26 (13%) with reproducible
squeaking. Hips with reproducible squeaking had a greater mean range
of movement (p <
0.001) and mean ligament laxity (p = 0.004), smaller
median head size (p = 0.01) and decreased mean acetabular component
inclination (p = 0.02) and anteversion angle (p = 0.02) compared
with the other groups. There was no relationship between squeaking
and age (p = 0.13), height (p = 0.263), weight (p = 0.333), body
mass index (p = 0.643), gender (p = 0.07) or patient outcome score
(p = 0.422). There were no revisions during follow-up. Despite the
surprisingly high incidence of squeaking, all patients remain satisfied
with their hip replacement. Cite this article:
Restoration of leg length and offset is an important
goal in total hip replacement. This paper reports a calliper-based technique
to help achieve these goals by restoring the location of the centre
of the femoral head. This was validated first by using a co-ordinate
measuring machine to see how closely the calliper technique could
record and restore the centre of the femoral head when simulating
hip replacement on Sawbone femur, and secondly by using CT in patients
undergoing hip replacement. Results from the co-ordinate measuring machine showed that the
centre of the femoral head was predicted by the calliper to within
4.3 mm for offset (mean 1.6 (95% confidence interval (CI) 0.4 to
2.8)) and 2.4 mm for vertical height (mean -0.6 (95% CI -1.4 to
0.2)).
The CT scans showed that offset and vertical height were restored
to within 8 mm
(mean -1 (95% CI -2.1 to 0.6)) and -14 mm (mean 4 (95% CI 1.8 to
4.3)), respectively. Accurate assessment and restoration of the centre of the femoral
head is feasible with a calliper. It is quick, inexpensive, simple
to use and can be applied to any design of femoral component.
The angle of inclination of the acetabular component in total hip replacement is a recognised contributing factor in dislocation and early wear. During non-navigated surgery, insertion of the acetabular component has traditionally been performed at an angle of 45° relative to the sagittal plane as judged by the surgeon’s eye, the operative inclination. Typically, the method used to assess inclination is the measurement made on the postoperative anteroposterior radiograph, the radiological inclination. The aim of this study was to measure the intra-operative angle of inclination of the acetabular component on 60 consecutive patients in the lateral decubitus position when using a posterior approach during total hip replacement. This was achieved by taking intra-operative photographs of the acetabular inserter, representing the acetabular axis, and a horizontal reference. The results were compared with the post-operative radiological inclination. The mean post-operative radiological inclination was 13° greater than the photographed operative inclination, which was unexpectedly high. It appears that in the lateral decubitus position with a posterior approach, the uppermost hemipelvis adducts, thus reducing the apparent operative inclination. Surgeons using the posterior approach in lateral decubitus need to aim for a lower operative inclination than when operating with the patient supine in order to achieve an acceptable radiological inclination.
It has been suggested that the wear of ultra-high molecular weight polyethylene (UHMWPE) in total hip replacement is substantially reduced when the femoral head is ceramic rather than metal. However, studies of alumina and zirconia ceramic femoral heads on the penetration of an UHMWPE liner The purpose of this study was to examine the surface characteristics of 30 alumina and 24 zirconia ceramic femoral heads and to identify any phase transformation in the zirconia heads. We also studied the penetration rate of alumina and zirconia heads into contemporary UHMWPE liners. The alumina heads had been implanted for a mean of 11.3 years (8.1 to 16.2) and zirconia heads for a mean of 9.8 years (7.5 to 15). The mean surface roughness values of the explanted alumina heads (Ra 40.12 nm and Rpm 578.34 nm) were similar to those for the explanted zirconia heads (Ra 36.21 nm and Rpm 607.34 nm). The mean value of the monoclinic phase of two control zirconia heads was 1% (0.8% to 1.5%) and 1.2% (0.9% to 1.3%), respectively. The mean value of the monoclinic phase of 24 explanted zirconia heads was 7.3% (1% to 26%). In the alumina group, the mean linear penetration rate of the UMWPE liner was 0.10 mm/yr (0.09 to 0.12) in hips with low Ra and Rpm values (13.22 nm and 85.91 nm, respectively). The mean linear penetration rate of the UHMWPE liner was 0.13 mm/yr (0.07 to 0.23) in hips with high Ra and Rpm values (198.72 nm and 1329 nm, respectively). This difference was significant (p = 0.041). In the zirconia head group, the mean linear penetration rate of the UHMWPE liner was 0.09 mm/yr (0.07 to 0.14) in hips with low Ra and Rpm values (12.78 nm and 92.99 nm, respectively). The mean linear penetration rate of the UHMWPE liner was 0.12 mm/yr (0.08 to 0.22) in hips with high Ra and Rpm values (199.21 nm and 1381 nm, respectively). This difference was significant (p = 0.039). The explanted zirconia heads which had a minimal phase transformation had similar surface roughness and a similar penetration rate of UHMWPE liner as the explanted alumina head.
We performed a randomised, radiostereometric study comparing two different bone cements, one of which has been sparsely clinically documented. Randomisation of 60 total hip replacements (57 patients) into two groups of 30 was undertaken. All the patients were operated on using a cemented Charnley total hip replacement, the only difference between groups being the bone cement used to secure the femoral component. The two cements used were Palamed G and Palacos R with gentamicin. The patients were followed up with repeated clinical and radiostereometric examinations for two years to assess the micromovement of the femoral component and the clinical outcome. The mean subsidence was 0.18 mm and 0.21 mm, and the mean internal rotation was 1.7° and 2.0° at two years for the Palamed G and Palacos R with gentamicin bone cements, respectively. We found no statistically significant differences between the groups. Micromovement occurred between the femoral component and the cement, while the cement mantle was stable inside the bone. The Harris hip score improved from a mean of 38 points (14 to 54) and 36 (10 to 57) pre-operatively to a mean of 92 (77 to 100) and 91 (63 to 100) at two years in the Palamed G and Palacos R groups, respectively. No differences were found between the groups. Both bone cements provided good initial fixation of the femoral component and good clinical results at two years.
We inserted an electrode up the femoral neck into the femoral head of ten patients undergoing a metal-on-metal hip resurfacing arthroplasty through a posterior surgical approach and measured the oxygen concentration during the operation. In every patient the blood flow was compromised during surgery, but the extent varied. In three patients, the oxygen concentration was zero at the end of the procedure. The surgical approach caused a mean 60% drop (p <
0.005) in oxygen concentration while component insertion led to a further 20% drop (p <
0.04). The oxygen concentration did not improve significantly on wound closure. This study demonstrates that during hip resurfacing arthroplasty, patients experience some compromise to their femoral head blood supply and some have complete disruption.
We have investigated whether control of balance is improved during stance and gait and sit-to-stand tasks after unilateral total hip replacement undertaken for osteoarthritis of the hip. We examined 25 patients with a mean age of 67 years ( Before surgery, control of balance during gait and sit-to-stand tasks was abnormal in patients with severe osteoarthritis of the hip, while balance during stance was similar to that of the healthy control group. After total hip replacement, there was a progressive improvement at four and 12 months for most gait and sit-to-stand tasks and in the time needed to complete them. By 12 months, the values approached those of the control group. However, trunk pitch (forwards-backwards) and roll (side-to-side) velocities were less stable (greater than the control) when walking over barriers as was roll for the sit-to-stand task, indicative of a residual deficit of balance. Our data suggest that patients with symptomatic osteoarthritis of the hip have marked deficits of balance in gait tasks, which may explain the increased risk of falling which has been reported in some epidemiological studies. However, total hip replacement may help these patients to regain almost normal control of balance for some gait tasks, as we found in this study. Despite the improvement in most components of balance, however, the deficit in the control of trunk velocity during gait suggests that a cautious follow-up is required after total hip replacement regarding the risk of a fall, especially in the elderly.