The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor
Ketamine has been used in combination with a
variety of other agents for intra-articular analgesia, with promising results.
However, although it has been shown to be toxic to various types
of cell, there is no available information on the effects of ketamine
on chondrocytes. We conducted a prospective randomised controlled study to evaluate
the effects of ketamine on cultured chondrocytes isolated from rat
articular cartilage. The cultured cells were treated with 0.125
mM, 0.250 mM, 0.5 mM, 1 mM and 2 mM of ketamine respectively for
6 h, 24 hours and 48 hours, and compared with controls. Changes of
apoptosis were evaluated using fluorescence microscopy with a 490
nm excitation wavelength. Apoptosis and eventual necrosis were seen
at each concentration. The percentage viability of the cells was
inversely proportional to both the duration and dose of treatment
(p = 0.002 and p = 0.009). Doses of 0.5 mM, 1 mM and 2mM were absolutely
toxic. We concluded that in the absence of solid data to support the
efficacy of intra-articular ketamine for the control of pain, and
the toxic effects of ketamine on cultured chondrocytes shown by
this study, intra-articular ketamine, either alone or in combination
with other agents, should not be used to control pain. Cite this article:
The role of inflammatory cells and their products in tendinopathy is not completely understood. Pro-inflammatory cytokines are upregulated after oxidative and other forms of stress. Based on observations that increased cytokine expression has been demonstrated in cyclically-loaded tendon cells we hypothesised that because of their role in oxidative stress and apoptosis, pro-inflammatory cytokines may be present in rodent and human models of tendinopathy. A rat supraspinatus tendinopathy model produced by running overuse was investigated at the genetic level by custom micro-arrays. Additionally, samples of torn supraspinatus tendon and matched intact subscapularis tendon were collected from patients undergoing arthroscopic shoulder surgery for rotator-cuff tears and control samples of subscapularis tendon from ten patients with normal rotator cuffs undergoing arthroscopic stabilisation of the shoulder were also obtained. These were all evaluated using semiquantitative reverse transcription polymerase chain-reaction and immunohistochemistry. We identified significant upregulation of pro-inflammatory cytokines and apoptotic genes in the rodent model (p = 0.005). We further confirmed significantly increased levels of cytokine and apoptotic genes in human supraspinatus and subscapularis tendon harvested from patients with rotator cuff tears (p = 0.0008). These findings suggest that pro-inflammatory cytokines may play a role in tendinopathy and may provide a target for preventing tendinopathies.
We stably transfected early passage chondrocytes with an anti-apoptotic Bcl-2 gene We conclude that NO-induced chondrocyte death involves a mechanism which appears to be subject to regulation by an anti-apoptotic Bcl-2 gene. Therefore, Bcl-2 gene therapy may prove to be of therapeutic value in protecting human articular chondrocytes.