Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 907 - 914
1 Sep 1999
Bobyn JD Stackpool GJ Hacking SA Tanzer M Krygier JJ

We have studied the characteristics of bone ingrowth of a new porous tantalum biomaterial in a simple transcortical canine model using cylindrical implants 5 × 10 mm in size. The material was 75% to 80% porous by volume and had a repeating arrangement of slender interconnecting struts which formed a regular array of dodecahedron-shaped pores. We performed histological studies on two types of material, one with a smaller pore size averaging 430 μm at 4, 16 and 52 weeks and the other with a larger pore size averaging 650 μm at 2, 3, 4, 16 and 52 weeks. Mechanical push-out tests at 4 and 16 weeks were used to assess the shear strength of the bone-implant interface on implants of the smaller pore size. The extent of filling of the pores of the tantalum material with new bone increased from 13% at two weeks to between 42% and 53% at four weeks. By 16 and 52 weeks the average extent of bone ingrowth ranged from 63% to 80%. The tissue response to the small and large pore sizes was similar, with regions of contact between bone and implant increasing with time and with evidence of Haversian remodelling within the pores at later periods. Mechanical tests at four weeks indicated a minimum shear fixation strength of 18.5 MPa, substantially higher than has been obtained with other porous materials with less volumetric porosity. This porous tantalum biomaterial has desirable characteristics for bone ingrowth; further studies are warranted to ascertain its potential for clinical reconstructive orthopaedics


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 6 | Pages 1069 - 1075
1 Nov 1999
Goodman SB Song Y Chun L Regula D Aspenberg P

We implanted bone harvest chambers (BHCs) bilaterally in ten mature male New Zealand white rabbits. Polyethylene particles (0.3 ± 0.1 −m in diameter, 6.4×10. 12. particles/ml) were implanted for two, four or six weeks bilaterally in the BHCs, with subsequent removal of the ingrown tissue after each treatment. In addition to the particles, one side also received 1.5 −g of recombinant transforming growth factor ß1 (TGFβ1). At two weeks, the bone area as a percentage of total area was less in chambers containing TGFβ compared with those with particles alone (7.8 ± 1.3% v 16.9 ± 2.7% respectively; 95% confidence interval (CI) for difference -14.0 to -4.30; p = 0.002). At four weeks, the percentage area of bone was greater in chambers containing TGFβ compared with those with particles alone (31.2 ± 3.4% v 22.5 ± 2.0% respectively; 95% CI for difference 1.0 to 16.4; p = 0.03). There were no statistical differences at six weeks, despite a higher mean value with TGFβ treatment (38.2 ± 3.9% v 28.8 ± 3.5%; 95% CI for difference -4.6 to 23.3; p = 0.16). The number of vitronectin-receptor-positive cells (osteoclast-like cells) was greater in the treatment group with TGFβ compared with that with particles alone; most of these positive cells were located in the interstitium, rather than adjacent to bone. TGFβ1 is a pleotropic growth factor which can modulate cellular events in the musculoskeletal system in a time- and concentration-dependent manner. Our data suggest that there is an early window at between two and six weeks, in which TGFβ may favourably affect bone ingrowth in the BHC model. Exogenous growth factors such as TGFβ may be a useful adjunct in obtaining osseointegration and bone ingrowth, especially in revisions when there is compromised bone stock and residual particulate debris


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 6 | Pages 915 - 919
1 Aug 2002
Bechtold JE Kubic V Søballe K

We have investigated whether the presence of polyethylene (PE) alone is sufficient to cause an aggressive periprosthetic tissue response, or whether certain mechanical interface conditions can allow bone to grow while in the presence of PE. An experimental implant was loaded in the presence and absence of particulate PE under stable and unstable conditions.

Bone with a thin, discontinuous fibrous membrane formed in both groups of stable implants, either in the presence or absence of PE. By contrast, a continuous fibrous membrane consistently formed in both groups of unstable implants. The membrane consisted of loose fibrous connective tissue when PE was absent, and dense connective tissue with macrophages and a synovial lining when PE was present. In this model, if the interface was stable, the presence of PE was not sufficient to prevent the formation of bone or to produce a phagocytic tissue response. Only when the interface was unstable did a fibrous membrane form, and only then in the presence of PE.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 416 - 420
1 Mar 2005
Bobyn JD Hacking SA Krygier JJ Harvey EJ Little DG Tanzer M

The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron microscopy and the percentage of available pore space that was filled with new bone was calculated. The mean extent of bone ingrowth was 6.6% for the control implants and 12.2% for the zoledronic acid-treated implants, an absolute difference of 5.6% (95% confidence interval, 1.2 to 10.1) and a relative difference of 85% which was statistically significant. Individual islands of new bone formation within the implant pores were similar in number in both groups but were 69% larger in the zoledronic acid-treated group. The bisphosphonate zoledronic acid should be further investigated for use in accelerating or enhancing the biological fixation of implants to bone


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 670 - 675
1 May 2009
Agholme F Aspenberg P

Soaking bone grafts in a bisphosphonate solution before implantation can prevent their resorption and increase the local bone density in rats and humans. However, recent studies suggest that pre-treatment of allografts with bisphosphonate can prevent bone ingrowth into impaction grafts. We tested the hypothesis that excessive amounts of bisphosphonate would also cause a negative response in less dense grafts. We used a model where non-impacted metaphyseal bone grafts were randomised into three groups with either no bisphosphonate, alendronate followed by rinsing, and alendronate without subsequent rinsing, and inserted into bone chambers in rats. The specimens were evaluated histologically at one week, and by histomorphometry and radiology at four weeks. At four weeks, both bisphosphonate groups showed an increase in the total bone content, increased newly formed bone, and higher radiodensity than the controls. In spite of being implanted in a chamber with a limited opportunity to diffuse, even an excessive amount of bisphosphonate improved the outcome. We suggest that the negative results seen by others could be due to the combination of densely compacted bone and a bisphosphonate. We suggest that bisphosphonates are likely to have a negative influence where resorption is a prerequisite to create space for new bone ingrowth


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 8 | Pages 1182 - 1189
1 Nov 2003
Hacking SA Harvey EJ Tanzer M Krygier JJ Bobyn JD

We designed an in vivo study to determine if the superimposition of a microtexture on the surface of sintered titanium beads affected the extent of bone ingrowth. Cylindrical titanium intramedullary implants were coated with titanium beads to form a porous finish using commercial sintering techniques. A control group of implants was left in the as-sintered condition. The test group was etched in a boiling acidic solution to create an irregular surface over the entire porous coating. Six experimental dogs underwent simultaneous bilateral femoral intramedullary implantation of a control implant and an acid etched implant. At 12 weeks, the implants were harvested in situ and the femora processed for undecalcified, histological examination. Eight transverse serial sections for each implant were analysed by backscattered electron microscopy and the extent of bone ingrowth was quantified by computer-aided image analysis. The extent of bone ingrowth into the control implants was 15.8% while the extent of bone ingrowth into the etched implants was 25.3%, a difference of 60% that was statistically significant. These results are consistent with other research that documents the positive effect of microtextured surfaces on bone formation at an implant surface. The acid etching process developed for this study represents a simple method for enhancing the potential of commonly available porous coatings for biological fixation


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 1 | Pages 118 - 123
1 Jan 2001
Coathup MJ Blunn GW Flynn N Williams C Thomas NP

We investigated the implant-bone interface around one design of femoral stem, proximally coated with either a plasma-sprayed porous coating (plain porous) or a hydroxyapatite porous coating (porous HA), or which had been grit-blasted (Interlok). Of 165 patients implanted with a Bimetric hip hemiarthroplasty (Biomet, Bridgend, UK) specimens were retrieved from 58 at post-mortem. We estimated ingrowth and attachment of bone to the surface of the implant in 21 of these, eight plain porous, seven porous HA and six Interlok, using image analysis and light morphometric techniques. The amount of HA coating was also quantified. There was significantly more ingrowth (p = 0.012) and attachment of bone (p > 0.05) to the porous HA surface (mean bone ingrowth 29.093 ± 2.019%; mean bone attachment 37.287 ± 2.489%) than to the plain porous surface (mean bone ingrowth 21.762 ± 2.068%; mean bone attachment 18.9411 ± 1.971%). There was no significant difference in attachment between the plain porous and Interlok surfaces. Bone grew more evenly over the surface of the HA coating whereas on the porous surface, bone ingrowth and attachment occurred more on the distal and medial parts of the coated surface. No significant differences in the volume of HA were found with the passage of time. This study shows that HA coating increases the amount of ingrowth and attachment of bone and leads to a more even distribution of bone over the surface of the implant. This may have implications in reducing stress shielding and limiting osteolysis induced by wear particles


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 120 - 125
1 Jan 2004
Nilsson M Wang J Wielanek L Tanner KE Lidgren L

An injectable material consisting of calcium sulphate mixed with hydroxyapatite was investigated as a possible alternative to autograft in the restoration of bone defects. The material was studied both in vitro in simulated body fluid (SBF) and in vivo when implanted in rat muscles and into the proximal tibiae of rabbits. Variation in the strength and weight of the material during ageing in SBF was measured. Tissue response, material resorption and bone ingrowth were studied in the animal models. A good tissue response was observed in both the rat muscles and rabbit tibiae without inflammatory reactions or the presence of fibrous tissue. Ageing in SBF showed that during the first week carbonated hydroxyapatite precipitated on the surfaces of the material and this may enhance bone ingrowth


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 3 | Pages 441 - 447
1 Apr 2001
Rahbek O Overgaard S Lind M Bendix K Bünger C Søballe K

We have studied the beneficial effects of a hydroxyapatite (HA) coating on the prevention of the migration of wear debris along the implant-bone interface. We implanted a loaded HA-coated implant and a non-coated grit-blasted titanium alloy (Ti) implant in each distal femoral condyle of eight Labrador dogs. The test implant was surrounded by a gap communicating with the joint space and allowing access of joint fluid to the implant-bone interface. We injected polyethylene (PE) particles into the right knee three weeks after surgery and repeated this weekly for the following five weeks. The left knee received sham injections. The animals were killed eight weeks after surgery. Specimens from the implant-bone interface were examined under plain and polarised light. Only a few particles were found around HA-coated implants, but around Ti implants there was a large amount of particles. HA-coated implants had approximately 35% bone ingrowth, whereas Ti implants had virtually no bone ingrowth and were surrounded by a fibrous membrane. Our findings suggest that HA coating of implants is able to inhibit peri-implant migration of PE particles by creating a seal of tightly-bonded bone on the surface of the implant


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 4 | Pages 725 - 731
1 Jul 1999
Overgaard S Bromose U Lind M Bünger C Søballe K

We inserted two hydroxyapatite (HA)-coated implants with crystallinities of either 50% (HA-50%) or 75% (HA-75%) bilaterally into the medial femoral condyles of the knees of 16 dogs. The implants were allocated to two groups with implantation periods of 16 and 32 weeks. They were weight-bearing and subjected to controlled micromovement of 250 μm during each gait cycle. After 16 weeks, mechanical fixation of the HA-50% implants was increased threefold as compared with the HA-75% implants. After 32 weeks there was no difference between HA-50% and HA-75%. Fixation of HA-75% increased from 16 to 32 weeks whereas that of HA-50% was unchanged. HA-50% implants had 100% more bone ingrowth than HA-75% implants after 16 weeks. More HA coating was removed on HA-50% implants compared with HA-75% implants after both 16 and 32 weeks. No further loss of the HA coating was shown from 16 to 32 weeks. Our study suggests that the crystallinity of the HA coating is an important factor in its bioactivity and resorption during weight-bearing conditions. Our findings suggest two phases of coating resorption, an initial rapid loss, followed by a slow loss. Resorbed HA coating was partly replaced by bone ingrowth, suggesting that implant fixation will be durable


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 1072 - 1076
1 Sep 2004
Tien Y Chih T Lin JC Ju C Lin S

The healing of a hamstring graft to bone is the weak link in the reconstruction of a cruciate ligament using this donor material. We therefore investigated the augmentation of healing at the tendon-bone interface using calcium-phosphate cement (CPC). We performed semitendinosus autograft reconstructions of the anterior cruciate ligament on both knees of 22 New Zealand white rabbits. The interface between the grafted tendon and the bone tunnel for one knee was filled with CPC. Six rabbits were killed at the end of the first and second post-operative weeks in order to evaluate the biomechanical changes. Two rabbits were then killed sequentially at the end of weeks 1, 3, 6, 12 and 24 after operation and tissue removed for serial histological observation. Histological examination showed that the use of CPC produced early, diffuse and massive bone ingrowth. By contrast, in the non-CPC group of rabbits only a thin layer of new bone was seen. Mechanical pull-out testing at one week showed that the mean maximal tensile strength was 6.505 ± 1.333 N for the CPC group and 2.048 ± 0.950 N for the non-CPC group. At two weeks the values were 11.491 ± 2.865 N and 5.452 ± 3.955 N, respectively. Our findings indicate that CPC is a potentially promising material in clinical practice as regards its ability to reinforce the fixation of the tendon attachment to bone and to augment the overall effectiveness of tendon healing to bone


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 6 | Pages 1003 - 1007
1 Nov 1997
Oka M Chang Y Nakamura T Ushio K Toguchida J Gu H

We have studied damage to the tibial articular surface after replacement of the femoral surface in dogs. We inserted pairs of implants made of alumina, titanium and polyvinyl alcohol (PVA) hydrogel on titanium fibre mesh into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. We discuss the clinical implications of the possible use of this material in articular resurfacing and joint replacement


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 2 | Pages 270 - 275
1 Mar 1996
Hooten JP Engh CA Heekin RD Vinh TN

Two acetabula which contained large bone allografts introduced at revision arthroplasty were obtained at post-mortem. The allografts had been placed in superior defects to support cementless acetabular components, and both hips were functioning well at the time of death. Clinical radiographs demonstrated apparent healing of graft to host bone, no graft collapse and stability of the acetabular components. Microscopic examination of sections through these specimens showed that the bulk allografts were encapsulated in fibrous tissue. Vascularity was increased at the host-graft interface, but there was limited evidence of bone union between the graft and the host. In the few areas where union had occurred, revascularisation extended no more than 2 mm beyond the graft-host interface. Within the body of the graft, the acellular matrix of trabecular bone maintained structural integrity up to 48 months after surgery. In areas where the allograft was adjacent to an implant, there was fibrous tissue orientated parallel to the implant surface. The acetabulum which contained a porous-coated component showed evidence of bone growth into the porous surface where it was in contact with viable host bone. No ingrowth occurred in areas where the porous coating was in contact with the graft. Although the grafts were functioning well, allograft revascularisation and remodelling were minimal, and the radiological appearance of healing did not correlate with histological findings


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 121 - 126
1 Jan 2007
Jensen TB Overgaard S Lind M Rahbek O Bünger C Søballe K

Impacted bone allograft is often used in revision joint replacement. Hydroxyapatite granules have been suggested as a substitute or to enhance morcellised bone allograft. We hypothesised that adding osteogenic protein-1 to a composite of bone allograft and non-resorbable hydroxyapatite granules (ProOsteon) would improve the incorporation of bone and implant fixation. We also compared the response to using ProOsteon alone against bone allograft used in isolation. We implanted two non-weight-bearing hydroxyapatite-coated implants into each proximal humerus of six dogs, with each implant surrounded by a concentric 3 mm gap. These gaps were randomly allocated to four different procedures in each dog: 1) bone allograft used on its own; 2) ProOsteon used on its own; 3) allograft and ProOsteon used together; or 4) allograft and ProOsteon with the addition of osteogenic protein-1.

After three weeks osteogenic protein-1 increased bone formation and the energy absorption of implants grafted with allograft and ProOsteon. A composite of allograft, ProOsteon and osteogenic protein-1 was comparable, but not superior to, allograft used on its own.

ProOsteon alone cannot be recommended as a substitute for allograft around non-cemented implants, but should be used to extend the volume of the graft, preferably with the addition of a growth factor.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 1 | Pages 120 - 125
1 Jan 2011
Lim H Bae J Song H Teoh SH Kim H Kum D

Medial open-wedge high tibial osteotomy has been gaining popularity in recent years, but adequate supporting material is required in the osteotomy gap for early weight-bearing and rapid union. The purpose of this study was to investigate whether the implantation of a polycaprolactone-tricalcium phosphate composite scaffold wedge would enhance healing of the osteotomy in a micro pig model. We carried out open-wedge high tibial osteotomies in 12 micro pigs aged from 12 to 16 months. A scaffold wedge was inserted into six of the osteotomies while the other six were left open. Bone healing was evaluated after three and six months using plain radiographs, CT scans, measurement of the bone mineral density and histological examination.

Complete bone union was obtained at six months in both groups. There was no collapse at the osteotomy site, loss of correction or failure of fixation in either group. Staining with haematoxylin and eosin demonstrated that there was infiltration of new bone tissue into the macropores and along the periphery of the implanted scaffold in the scaffold group. The CT scans and measurement of the bone mineral density showed that at six months specimens in the scaffold group had a higher bone mineral density than in the control group, although the implantation of the polycaprolactone-tricalcium phosphate composite scaffold wedge did not enhance healing of the osteotomy.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 4 | Pages 549 - 556
1 Apr 2007
Udofia I Liu F Jin Z Roberts P Grigoris P

Finite element analysis was used to examine the initial stability after hip resurfacing and the effect of the procedure on the contact mechanics at the articulating surfaces. Models were created with the components positioned anatomically and loaded physiologically through major muscle forces. Total micromovement of less than 10 μm was predicted for the press-fit acetabular components models, much below the 50 μm limit required to encourage osseointegration. Relatively high compressive acetabular and contact stresses were observed in these models. The press-fit procedure showed a moderate influence on the contact mechanics at the bearing surfaces, but produced marked deformation of the acetabular components. No edge contact was predicted for the acetabular components studied.

It is concluded that the frictional compressive stresses generated by the 1 mm to 2 mm interference-fit acetabular components, together with the minimal micromovement, would provide adequate stability for the implant, at least in the immediate post-operative situation.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 12 | Pages 1635 - 1640
1 Dec 2008
Spence G Phillips S Campion C Brooks R Rushton N

Carbonate-substituted hydroxyapatite (CHA) is more osteoconductive and more resorbable than hydroxyapatite (HA), but the underlying mode of its action is unclear. We hypothesised that increased resorption of the ceramic by osteoclasts might subsequently upregulate osteoblasts by a coupling mechanism, and sought to test this in a large animal model.

Defects were created in both the lateral femoral condyles of 12 adult sheep. Six were implanted with CHA granules bilaterally, and six with HA. Six of the animals in each group received the bisphosphonate zoledronate (0.05 mg/kg), which inhibits the function of osteoclasts, intra-operatively.

After six weeks bony ingrowth was greater in the CHA implants than in HA, but not in the animals given zoledronate. Functional osteoclasts are necessary for the enhanced osteoconduction seen in CHA compared with HA.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 421 - 425
1 Mar 2005
Blom AW Cunningham JL Hughes G Lawes TJ Smith N Blunn G Learmonth ID Goodship AE

This study investigates the use of porous biphasic ceramics as graft extenders in impaction grafting of the femur during revision hip surgery.

Impaction grafting of the femur was performed in four groups of sheep. Group one received pure allograft, group two 50% allograft and 50% BoneSave, group three 50% allograft and 50% BoneSave type 2 and group four 10% allograft and 90% BoneSave as the graft material. Function was assessed using an index of pre- and post-operative peak vertical ground reaction force ratios. Changes in bone mineral density were measured by dual energy X ray absorptiometry (DEXA) scanning. Loosening and subsidence were assessed radiographically and by histological examination of the explanted specimens.

There was no statistically significant difference between the four groups after 18 months of unrestricted functional loading for all outcome measures.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 1 | Pages 124 - 130
1 Jan 2009
Deuel CR Jamali AA Stover SM Hazelwood SJ

Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur.

These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 2 | Pages 246 - 253
1 Feb 2008
Coathup M Smith N Kingsley C Buckland T Dattani R Ascroft GP Blunn G

An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p > 0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p < 0.05). The results for the area of new bone formation demonstrated no significant differences (p > 0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p > 0.05) and percentage ApaPore-bone contact (p > 0.05).

The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.