Advertisement for orthosearch.org.uk
Results 1 - 20 of 88
Results per page:
The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1275 - 1279
1 Oct 2018
Fader RR Tao MA Gaudiani MA Turk R Nwachukwu BU Esposito CI Ranawat AS

Aims

The purpose of this study was to evaluate spinopelvic mechanics from standing and sitting positions in subjects with and without femoroacetabular impingement (FAI). We hypothesize that FAI patients will experience less flexion at the lumbar spine and more flexion at the hip whilst changing from standing to sitting positions than subjects without FAI. This increase in hip flexion may contribute to symptomatology in FAI.

Patients and Methods

Male subjects were prospectively enrolled to the study (n = 20). Mean age was 31 years old (22 to 41). All underwent clinical examination, plain radiographs, and dynamic imaging using EOS. Subjects were categorized into three groups: non-FAI (no radiographic or clinical FAI or pain), asymptomatic FAI (radiographic and clinical FAI but no pain), and symptomatic FAI (patients with both pain and radiographic FAI). FAI was defined as internal rotation less than 15° and alpha angle greater than 60°. Subjects underwent standing and sitting radiographs in order to measure spine and femoroacetabular flexion.


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 792 - 801
1 Aug 2024
Kleeman-Forsthuber L Kurkis G Madurawe C Jones T Plaskos C Pierrepont JW Dennis DA

Aims. Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age. Methods. A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements. Results. With advancing age, patients demonstrate increased posterior APPT, decreased standing LL, decreased LF, higher pelvic incidence minus lumbar lordosis (PI-LL) mismatch, higher prevalence of abnormal spinopelvic mobility, and higher HUI percentage. With each decade, APPT progressed posteriorly 2.1°, LF declined 6.0°, PI-LL mismatch increased 2.9°, and spinopelvic mobility increased 3.8°. Significant differences were found between the sexes for APPT, SPT, SS, LL, and LF, but were not felt to be clinically relevant. Conclusion. With advancing age, spinopelvic biomechanics demonstrate decreased spinal mobility and increased pelvic/hip mobility. Surgeons should consider the higher prevalence of instability risk factors in elderly patients and anticipate changes evolving in spinopelvic biomechanics for young patients. Cite this article: Bone Joint J 2024;106-B(8):792–801


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1766 - 1773
1 Dec 2021
Sculco PK Windsor EN Jerabek SA Mayman DJ Elbuluk A Buckland AJ Vigdorchik JM

Aims. Spinopelvic mobility plays an important role in functional acetabular component position following total hip arthroplasty (THA). The primary aim of this study was to determine if spinopelvic hypermobility persists or resolves following THA. Our second aim was to identify patient demographic or radiological factors associated with hypermobility and resolution of hypermobility after THA. Methods. This study investigated patients with preoperative posterior hypermobility, defined as a change in sacral slope (SS) from standing to sitting (ΔSS. stand-sit. ) ≥ 30°. Radiological spinopelvic parameters, including SS, pelvic incidence (PI), lumbar lordosis (LL), PI-LL mismatch, anterior pelvic plane tilt (APPt), and spinopelvic tilt (SPT), were measured on preoperative imaging, and at six weeks and a minimum of one year postoperatively. The severity of bilateral hip osteoarthritis (OA) was graded using Kellgren-Lawrence criteria. Results. A total of 136 patients were identified as having preoperative spinopelvic hypermobility. At one year after THA, 95% (129/136) of patients were no longer categorized as hypermobile on standing and sitting radiographs (ΔSS. stand-sit. < 30°). Mean ΔSS. stand-sit. decreased from 36.4° (SD 5.1°) at baseline to 21.4° (SD 6.6°) at one year (p < 0.001). Mean SS. seated. increased from baseline (11.4° (SD 8.8°)) to one year after THA by 11.5° (SD 7.4°) (p < 0.001), which correlates to an 8.5° (SD 5.5°) mean decrease in seated functional cup anteversion. Contralateral hip OA was the only radiological predictor of hypermobility persisting at one year after surgery. The overall reoperation rate was 1.5%. Conclusion. Spinopelvic hypermobility was found to resolve in the majority (95%) of patients one year after THA. The increase in SS. seated. was clinically significant, suggesting that current target recommendations for the hypermobile patient (decreased anteversion and inclination) should be revisited. Cite this article: Bone Joint J 2021;103-B(12):1766–1773


The Bone & Joint Journal
Vol. 104-B, Issue 3 | Pages 352 - 358
1 Mar 2022
Kleeman-Forsthuber L Vigdorchik JM Pierrepont JW Dennis DA

Aims. Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application. Methods. Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°. Results. PI showed a positive correlation with parameters of SS, SPT, and LL (r-value range 0.468 to 0.661). Patients with a higher PI value showed higher degrees of standing LL, likely as a compensatory measure to maintain sagittal spine balance. There was a positive correlation between LL and LF such that patients with less standing LL had decreased LF (r = 0.49). Similarly, there was a positive correlation between increased SSD and decreased LF (r = 0.54). PI in isolation did not show any significant correlation with lumbar (r = 0.04) or pelvic mobility (r = 0.02). The majority of patients (range 89.4% to 94.2%) had normal lumbar and pelvic mobility regardless of the PI value. Conclusion. The PI value alone is not indicative of either spinal or pelvic mobility, and thus in isolation may not be a risk factor for THA instability. Patients with SSD had higher rates of spinopelvic stiffness, which may be the mechanism by which PI relates to THA instability risk, but further clinical studies are required. Cite this article: Bone Joint J 2022;104-B(3):352–358


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1370 - 1378
1 Oct 2019
Cheung JPY Chong CHW Cheung PWH

Aims. The aim of this study was to determine the influence of pelvic parameters on the tendency of patients with adolescent idiopathic scoliosis (AIS) to develop flatback deformity (thoracic hypokyphosis and lumbar hypolordosis) and its effect on quality-of-life outcomes. Patients and Methods. This was a radiological study of 265 patients recruited for Boston bracing between December 2008 and December 2013. Posteroanterior and lateral radiographs were obtained before, immediately after, and two-years after completion of bracing. Measurements of coronal and sagittal Cobb angles, coronal balance, sagittal vertical axis, and pelvic parameters were made. The refined 22-item Scoliosis Research Society (SRS-22r) questionnaire was recorded. Association between independent factors and outcomes of postbracing ≥ 6° kyphotic changes in the thoracic spine and ≥ 6° lordotic changes in the lumbar spine were tested using likelihood ratio chi-squared test and univariable logistic regression. Multivariable logistic regression models were then generated for both outcomes with odds ratios (ORs), and with SRS-22r scores. Results. Reduced T5-12 kyphosis (mean -4.3° (. sd. 8.2); p < 0.001), maximum thoracic kyphosis (mean -4.3° (. sd. 9.3); p < 0.001), and lumbar lordosis (mean -5.6° (. sd. 12.0); p < 0.001) were observed after bracing treatment. Increasing prebrace maximum kyphosis (OR 1.133) and lumbar lordosis (OR 0.92) was associated with postbracing hypokyphotic change. Prebrace sagittal vertical axis (OR 0.975), prebrace sacral slope (OR 1.127), prebrace pelvic tilt (OR 0.940), and change in maximum thoracic kyphosis (OR 0.878) were predictors for lumbar hypolordotic changes. There were no relationships between coronal deformity, thoracic kyphosis, or lumbar lordosis with SRS-22r scores. Conclusion. Brace treatment leads to flatback deformity with thoracic hypokyphosis and lumbar hypolordosis. Changes in the thoracic spine are associated with similar changes in the lumbar spine. Increased sacral slope, reduced pelvic tilt, and pelvic incidence are associated with reduced lordosis in the lumbar spine after bracing. Nevertheless, these sagittal parameter changes do not appear to be associated with worse quality of life. Cite this article: Bone Joint J 2019;101-B:1370–1378


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1309 - 1316
1 Jul 2021
Garg B Bansal T Mehta N

Aims. To describe the clinical, radiological, and functional outcomes in patients with isolated congenital thoracolumbar kyphosis who were treated with three-column osteotomy by posterior-only approach. Methods. Hospital records of 27 patients with isolated congenital thoracolumbar kyphosis undergoing surgery at a single centre were retrospectively analyzed. All patients underwent deformity correction which involved a three-column osteotomy by single-stage posterior-only approach. Radiological parameters (local kyphosis angle (KA), thoracic kyphosis (TK), lumbar lordosis (LL), pelvic tilt (PT), sacral slope (SS), C7 sagittal vertical axis (C7 SVA), T1 slope, and pelvic incidence minus lumbar lordosis (PI-LL)), functional scores, and clinical details of complications were recorded. Results. The mean age of the study population was 13.9 years (SD 6.4). The apex of deformity was in thoracic, thoracolumbar, and lumbar spine in five, 14, and eight patients, respectively. The mean operating time was 178.4 minutes (SD 38.5) and the mean operative blood loss was 701.8 ml (SD 194.4). KA (preoperative mean 70.8° (SD 21.6°) vs final follow-up mean 24.7° (SD 18.9°); p < 0.001) and TK (preoperative mean -1.48° (SD 41.23°) vs final follow-up mean 24.28° (SD 17.29°); p = 0.005) underwent a significant change with surgery. Mean Scoliosis Research Society (SRS-22r) score improved after surgical correction (preoperative mean 3.24 (SD 0.37) vs final follow-up mean 4.28 (SD 0.47); p < 0.001) with maximum improvement in self-image and mental health domains. The overall complication rate was 26%, including two neurological and five non-neurological complications. Permanent neurological deficit was noted in one patient. Conclusion. Deformity correction employing three-column osteotomies by a single-stage posterior-only approach is safe and effective in treating isolated congenital thoracolumbar kyphosis. Cite this article: Bone Joint J 2021;103-B(7):1309–1316


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 19 - 27
1 Jan 2024
Tang H Guo S Ma Z Wang S Zhou Y

Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in sagittal pelvic tilt after total hip arthroplasty (THA). Methods. This retrospective study included 143 patients who underwent 171 THAs between April 2019 and October 2020 and had full-body lateral radiographs preoperatively and at one year postoperatively. We measured the pelvic incidence (PI), the sagittal vertical axis (SVA), pelvic tilt, sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis to classify patients into types A, B1, B2, B3, and C. The change of pelvic tilt was predicted according to the normal range of SVA (0 mm to 50 mm) for types A, B1, B2, and B3, and based on the absolute value of one-third of the PI-LL mismatch for type C patients. The reliability of the classification of the patients and the prediction of the change of pelvic tilt were assessed using kappa values and intraclass correlation coefficients (ICCs), respectively. Validity was assessed using the overall mean error and mean absolute error (MAE) for the prediction of the change of pelvic tilt. Results. The kappa values were 0.927 (95% confidence interval (CI) 0.861 to 0.992) and 0.945 (95% CI 0.903 to 0.988) for the inter- and intraobserver reliabilities, respectively, and the ICCs ranged from 0.919 to 0.997. The overall mean error and MAE for the prediction of the change of pelvic tilt were -0.3° (SD 3.6°) and 2.8° (SD 2.4°), respectively. The overall absolute change of pelvic tilt was 5.0° (SD 4.1°). Pre- and postoperative values and changes in pelvic tilt, SVA, SS, and LL varied significantly among the five types of patient. Conclusion. We found that the proposed algorithm was reliable and valid for predicting the standing pelvic tilt after THA. Cite this article: Bone Joint J 2024;106-B(1):19–27


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1289 - 1296
1 Oct 2018
Berliner JL Esposito CI Miller TT Padgett DE Mayman DJ Jerabek SA

Aims. The aims of this study were to measure sagittal standing and sitting lumbar-pelvic-femoral alignment in patients before and following total hip arthroplasty (THA), and to consider what preoperative factors may influence a change in postoperative pelvic position. Patients and Methods. A total of 161 patients were considered for inclusion. Patients had a mean age of the remaining 61 years (. sd. 11) with a mean body mass index (BMI) of 28 kg/m. 2. (. sd. 6). Of the 161 patients, 82 were male (51%). We excluded 17 patients (11%) with spinal conditions known to affect lumbar mobility as well as the rotational axis of the spine. Standing and sitting spine-to-lower-limb radiographs were taken of the remaining 144 patients before and one year following THA. Spinopelvic alignment measurements, including sacral slope, lumbar lordosis, and pelvic incidence, were measured. These angles were used to calculate lumbar spine flexion and femoroacetabular hip flexion from a standing to sitting position. A radiographic scoring system was used to identify those patients in the series who had lumbar degenerative disc disease (DDD) and compare spinopelvic parameters between those patients with DDD (n = 38) and those who did not (n = 106). Results. Following THA, patients sat with more anterior pelvic tilt (mean increased sacral slope 18° preoperatively versus 23° postoperatively; p = 0.001) and more lumbar lordosis (mean 28° preoperatively versus 35° postoperatively; p = 0.001). Preoperative change in sacral slope from standing to sitting (p = 0.03) and the absence of DDD (p = 0.001) correlated to an increased change in postoperative sitting pelvic alignment. Conclusion. Sitting lumbar-pelvic-femoral alignment following THA may be driven by hip arthritis and/or spinal deformity. Patients with DDD and fixed spinopelvic alignment have a predictable pelvic position one year following THA. Patients with normal spines have less predictable postoperative pelvic position, which is likely to be driven by hip stiffness. Cite this article: Bone Joint J 2018;100-B:1289–96


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 800 - 806
1 Jun 2014
Karampalis C Tsirikos AI

We describe 13 patients with cerebral palsy and lordoscoliosis/hyperlordosis of the lumbar spine who underwent a posterior spinal fusion at a mean age of 14.5 years (10.8 to 17.4) to improve sitting posture and relieve pain. The mean follow-up was 3.3 years (2.2 to 6.2). The mean pre-operative lumbar lordosis was 108. °. (80 to 150. °. ) and was corrected to 62. °. (43. °.  to 85. °. ); the mean thoracic kyphosis from 17. °. (-23. °. to 35. °. ) to 47. °. (25. °. to 65. °. ); the mean scoliosis from 82. °. (0. °. to 125. °. ) to 22. °. (0. °. to 40. °. ); the mean pelvic obliquity from 21. °. (0. °. to 38. °. ) to 3. °. (0. °. to 15. °. ); the mean sacral slope from 79. °. (54. °. to 90. °. ) to 50. °. (31. °. to 66. °. ). The mean pre-operative coronal imbalance was 5 cm (0 cm to 8.9 cm) and was corrected to 0.6 cm (0 to 3.2). The mean sagittal imbalance of -8 cm (-16 cm to 7.8 cm) was corrected to -1.6 cm (-4 cm to 2.5 cm). The mean operating time was 250 minutes (180 to 360 minutes) and intra-operative blood loss 0.8 of estimated blood volume (0.3 to 2 estimated blood volume). The mean intensive care and hospital stay were 3.5 days (2 to 8) and 14.5 days (10 to 27), respectively. Three patients lost a significant amount of blood intra-operatively and subsequently developed chest or urinary infections and superior mesenteric artery syndrome. An increased pre-operative lumbar lordosis and sacral slope were associated with increased peri-operative morbidity: scoliosis and pelvic obliquity were not. A reduced lumbar lordosis and increased thoracic kyphosis correlated with better global sagittal balance at follow-up. All patients and their parents reported excellent surgical outcomes. Lordoscoliosis and hyperlordosis are associated with significant morbidity in quadriplegic patients. They are rare deformities and their treatment is challenging. Sagittal imbalance is the major component: it can be corrected by posterior fusion of the spine with excellent functional results. Cite this article: Bone Joint J 2014;96-B:800–6


We investigated the relationship between spinopelvic parameters and disc degeneration in young adult patients with spondylolytic spondylolisthesis. A total of 229 men with a mean age of 21 years (18 to 26) with spondylolytic spondylolisthesis were identified. All radiological measurements, including pelvic incidence, sacral slope, pelvic tilt, lumbar lordosis, sacral inclination, lumbosacral angle (LSA), and sacrofemoral distance, were calculated from standing lateral lumbosacral radiographs. The degree of intervertebral disc degeneration was classified using a modified Pfirrmann scale. We analysed the spinopelvic parameters according to disc level, degree of slip and disc degeneration. There were significant positive correlations between the degree of slip and pelvic incidence (p = 0.009), sacral slope (p = 0.003) and lumbar lordosis (p = 0.010). The degree of slip and the LSA were correlated with disc degeneration (p < 0.001 and p = 0.003, respectively). There was also a significant difference between the degree of slip (p < 0.001) and LSA (p = 0.006) according to the segmental level of disc degeneration. Cite this article: Bone Joint J 2013;95-B:1239–43


The Bone & Joint Journal
Vol. 103-B, Issue 1 | Pages 148 - 156
1 Jan 2021
Tsirikos AI Carter TH

Aims. To report the surgical outcome of patients with severe Scheuermann’s kyphosis treated using a consistent technique and perioperative management. Methods. We reviewed 88 consecutive patients with a severe Scheuermann's kyphosis who had undergone posterior spinal fusion with closing wedge osteotomies and hybrid instrumentation. There were 55 males and 33 females with a mean age of 15.9 years (12.0 to 24.7) at the time of surgery. We recorded their demographics, spinopelvic parameters, surgical correction, and perioperative data, and assessed the impact of surgical complications on outcome using the Scoliosis Research Society (SRS)-22 questionnaire. Results. The mean follow-up was 8.4 years (2 to 14.9). There were 85 patients (96.6%) with a thoracic deformity. Posterior spinal fusion with closing-wedge osteotomies and hybrid instrumentation was used in 86 patients; two patients underwent combined anterior and posterior spinal fusion. The mean kyphosis was corrected from 94.5° to 47.5° (p < 0.001). Coronal and sagittal balance returned to normal. The rate of complications was 12.5%: there were no neurological deficits, implant failure, or revision surgery. SRS-22 scores improved from a mean 3.6 (1.3 to 4.1) to 4.6 (4.2 to 5.0) at two years (p < 0.001) with a high rate of patient satisfaction. Non-smokers and patients with lower preoperative SRS-22 scores showed greater improvement in their quality of life. Sagittal pelvic balance did not change after correction of the kyphosis and correlated with lumbar lordosis but not with thoracic or thoracolumbar kyphosis. Conclusion. Posterior spinal fusion using hybrid instrumentation, closing-wedge osteotomies, and iliac bone grafting achieves satisfactory correction of a severe kyphosis resulting in improvements in physical and mental health and a high degree of patient-reported satisfaction. Cite this article: Bone Joint J 2021;103-B(1):148–156


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 17 - 24
1 Jul 2021
Vigdorchik JM Sharma AK Buckland AJ Elbuluk AM Eftekhary N Mayman DJ Carroll KM Jerabek SA

Aims. Patients with spinal pathology who undergo total hip arthroplasty (THA) have an increased risk of dislocation and revision. The aim of this study was to determine if the use of the Hip-Spine Classification system in these patients would result in a decreased rate of postoperative dislocation in patients with spinal pathology. Methods. This prospective, multicentre study evaluated 3,777 consecutive patients undergoing THA by three surgeons, between January 2014 and December 2019. They were categorized using The Hip-Spine Classification system: group 1 with normal spinal alignment; group 2 with a flatback deformity, group 2A with normal spinal mobility, and group 2B with a stiff spine. Flatback deformity was defined by a pelvic incidence minus lumbar lordosis of > 10°, and spinal stiffness was defined by < 10° change in sacral slope from standing to seated. Each category determined a patient-specific component positioning. Survivorship free of dislocation was recorded and spinopelvic measurements were compared for reliability using intraclass correlation coefficient. Results. A total of 2,081 patients met the inclusion criteria. There were 987 group 1A, 232 group 1B, 715 group 2A, and 147 group 2B patients. A total of 70 patients had a lumbar fusion, most had L4-5 (16; 23%) or L4-S1 (12; 17%) fusions; 51 patients (73%) had one or two levels fused, and 19 (27%) had > three levels fused. Dual mobility (DM) components were used in 166 patients (8%), including all of those in group 2B and with > three level fusions. Survivorship free of dislocation at five years was 99.2% with a 0.8% dislocation rate. The correlation coefficient was 0.83 (95% confidence interval 0.89 to 0.91). Conclusion. This is the largest series in the literature evaluating the relationship between hip-spine pathology and dislocation after THA, and guiding appropriate treatment. The Hip-Spine Classification system allows surgeons to make appropriate evaluations preoperatively, and it guides the use of DM components in patients with spinopelvic pathology in order to reduce the risk of dislocation in these high-risk patients. Cite this article: Bone Joint J 2021;103-B(7 Supple B):17–24


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1062 - 1071
1 Aug 2020
Cheung JPY Fong HK Cheung PWH

Aims. To determine the effectiveness of prone traction radiographs in predicting postoperative slip distance, slip angle, changes in disc height, and lordosis after surgery for degenerative spondylolisthesis of the lumbar spine. Methods. A total of 63 consecutive patients with a degenerative spondylolisthesis and preoperative prone traction radiographs obtained since 2010 were studied. Slip distance, slip angle, disc height, segmental lordosis, and global lordosis (L1 to S1) were measured on preoperative lateral standing radiographs, flexion-extension lateral radiographs, prone traction lateral radiographs, and postoperative lateral standing radiographs. Patients were divided into two groups: posterolateral fusion or posterolateral fusion with interbody fusion. Results. The mean changes in segmental lordosis and global lordosis were 7.1° (SD 6.7°) and 2.9° (SD 9.9°) respectively for the interbody fusion group, and 0.8° (SD 5.1°) and -0.4° (SD 10.1°) respectively for the posterolateral fusion-only group. Segmental lordosis (ρ = 0.794, p < 0.001) corrected by interbody fusion correlated best with prone traction radiographs. Global lumbar lordosis (ρ = 0.788, p < 0.001) correlated best with the interbody fusion group and preoperative lateral standing radiographs. The least difference in slip distance (-0.3 mm (SD 1.7 mm), p < 0.001), slip angle (0.9° (SD 5.2°), p < 0.001), and disc height (0.02 mm (SD 2.4 mm), p < 0.001) was seen between prone traction and postoperative radiographs. Regression analyses suggested that prone traction parameters best predicted correction of slip distance (Corrected Akaike’s Information Criterion (AICc) = 37.336) and disc height (AICc = 58.096), while correction of slip angle (AICc = 26.453) was best predicted by extension radiographs. Receiver operating characteristic (ROC) cut-off showed, with 68.3% sensitivity and 64.5% specificity, that to achieve a 3.0° increase in segmental lordotic angle, patients with a prone traction disc height of 8.5 mm needed an interbody fusion. Conclusion. Prone traction radiographs best predict the slip distance and disc height correction achieved by interbody fusion for lumbar degenerative spondylolisthesis. To achieve this maximum correction, interbody fusion should be undertaken if a disc height of more than 8.5 mm is attained on preoperative prone traction radiographs. Level of Evidence: Level II Prognostic Study. Cite this article: Bone Joint J 2020;102-B(8):1062–1071


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1359 - 1367
3 Oct 2020
Hasegawa K Okamoto M Hatsushikano S Watanabe K Ohashi M Vital J Dubousset J

Aims. The aim of this study is to test the hypothesis that three grades of sagittal compensation for standing posture (normal, compensated, and decompensated) correlate with health-related quality of life measurements (HRQOL). Methods. A total of 50 healthy volunteers (normal), 100 patients with single-level lumbar degenerative spondylolisthesis (LDS), and 70 patients with adult to elderly spinal deformity (deformity) were enrolled. Following collection of demographic data and HRQOL measured by the Scoliosis Research Society-22r (SRS-22r), radiological measurement by the biplanar slot-scanning full body stereoradiography (EOS) system was performed simultaneously with force-plate measurements to obtain whole body sagittal alignment parameters. These parameters included the offset between the centre of the acoustic meatus and the gravity line (CAM-GL), saggital vertical axis (SVA), T1 pelvic angle (TPA), McGregor slope, C2-7 lordosis, thoracic kyphosis (TK), lumbar lordosis (LL), pelvic incidence (PI), PI-LL, sacral slope (SS), pelvic tilt (PT), and knee flexion. Whole spine MRI examination was also performed. Cluster analysis of the SRS-22r scores in the pooled data was performed to classify the subjects into three groups according to the HRQOL, and alignment parameters were then compared among the three cluster groups. Results. On the basis of cluster analysis of the SRS-22r subscores, the pooled subjects were divided into three HRQOL groups as follows: almost normal (mean 4.24 (SD 0.32)), mildly disabled (mean 3.32 (SD 0.24)), and severely disabled (mean 2.31 (SD 0.35)). Except for CAM-GL, all the alignment parameters differed significantly among the cluster groups. The threshold values of key alignment parameters for severe disability were TPA > 30°, C2-7 lordosis > 13°, PI-LL > 30°, PT > 28°, and knee flexion > 8°. Lumbar spinal stenosis was found to be associated with the symptom severity. Conclusion. This study provides evidence that the three grades of sagittal compensation in whole body alignment correlate with HRQOL scores. The compensation grades depend on the clinical diagnosis, whole body sagittal alignment, and lumbar spinal stenosis. The threshold values of key alignment parameters may be an indication for treatment. Cite this article: Bone Joint J 2020;102-B(10):1359–1367


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 376 - 382
1 Mar 2020
Pesenti S Lafage R Henry B Kim HJ Bolzinger M Elysée J Cunningham M Choufani E Lafage V Blanco J Jouve J Widmann R

Aims. To compare the rates of sagittal and coronal correction for all-pedicle screw instrumentation and hybrid instrumentation using sublaminar bands in the treatment of thoracic adolescent idiopathic scoliosis (AIS). Methods. We retrospectively reviewed the medical records of 124 patients who had undergone surgery in two centres for the correction of Lenke 1 or 2 AIS. Radiological evaluation was carried out preoperatively, in the early postoperative phase, and at two-year follow-up. Parameters measured included coronal Cobb angles and thoracic kyphosis. Postoperative alignment was compared after matching the cohorts by preoperative coronal Cobb angle, thoracic kyphosis, lumbar lordosis, and pelvic incidence. Results. A total of 179 patients were available for analysis. After matching, 124 patients remained (62 in each cohort). Restoration of thoracic kyphosis was significantly better in the sublaminar band group than in the pedicle screw group (from 23.7° to 27.5° to 34.0° versus 23.9° to 18.7° to 21.5°; all p < 0.001). When the preoperative thoracic kyphosis was less than 20°, sublaminar bands achieved a normal postoperative thoracic kyphosis, whereas pedicle screws did not. In the coronal plane, pedicle screws resulted in a significantly better correction than sublaminar bands at final follow-up (73.0% versus 59.7%; p < 0.001). Conclusion. This is the first study to compare sublaminar bands and pedicle screws for the correction of a thoracic AIS. We have shown that pedicle screws give a good coronal correction which is maintained at two-year follow-up. Conversely, sublaminar bands restore the thoracic kyphosis better while pedicle screws are associated with a flattening of the thoracic spine. In patients with preoperative hypokyphosis, sublaminar bands should be used to restore a proper sagittal profile. Cite this article: Bone Joint J 2020;102-B(3):376–382


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 902 - 909
1 Aug 2019
Innmann MM Merle C Gotterbarm T Ewerbeck V Beaulé PE Grammatopoulos G

Aims. This study of patients with osteoarthritis (OA) of the hip aimed to: 1) characterize the contribution of the hip, spinopelvic complex, and lumbar spine when moving from the standing to the sitting position; 2) assess whether abnormal spinopelvic mobility is associated with worse symptoms; and 3) identify whether spinopelvic mobility can be predicted from static anatomical radiological parameters. Patients and Methods. A total of 122 patients with end-stage OA of the hip awaiting total hip arthroplasty (THA) were prospectively studied. Patient-reported outcome measures (PROMs; Oxford Hip Score, Oswestry Disability Index, and Veterans RAND 12-Item Health Survey Score) and clinical data were collected. Sagittal spinopelvic mobility was calculated as the change from the standing to sitting position using the lumbar lordosis angle (LL), sacral slope (SS), pelvic tilt (PT), pelvic-femoral angle (PFA), and acetabular anteinclination (AI) from lateral radiographs. The interaction of the different parameters was assessed. PROMs were compared between patients with normal spinopelvic mobility (10° ≤ ∆PT ≤ 30°) or abnormal spinopelvic mobility (stiff: ∆PT < ± 10°; hypermobile: ∆PT > ± 30°). Multiple regression and receiver operating characteristic (ROC) curve analyses were used to test for possible predictors of spinopelvic mobility. Results. Standing to sitting, the hip flexed by a mean of 57° (. sd. 17°), the pelvis tilted backwards by a mean of 20° (. sd. 12°), and the lumbar spine flexed by a mean of 20° (. sd. 14°); strong correlations were detected. There was no difference in PROMs between patients in the different spinopelvic mobility groups. Maximum hip flexion, standing PT, and standing AI were independent predictors of spinopelvic mobility (R. 2. = 0.42). The combined thresholds for standing was PT ≥ 13° and hip flexion ≥ 88° in the clinical examination, and had 90% sensitivity and 63% specificity of predicting spinopelvic stiffness, while SS ≥ 42° had 84% sensitivity and 67% specificity of predicting spinopelvic hypermobility. Conclusion. The hip, on average, accounts for three-quarters of the standing-to-sitting movement, but there is great variation. Abnormal spinopelvic mobility cannot be screened with PROMs. However, clinical and standing radiological features can predict spinopelvic mobility with good enough accuracy, allowing them to be used as reliable screening tools. Cite this article: Bone Joint J 2019;101-B:902–909


The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1080 - 1087
1 Aug 2017
Tsirikos AI Mataliotakis G Bounakis N

Aims. We present the results of correcting a double or triple curve adolescent idiopathic scoliosis using a convex segmental pedicle screw technique. Patients and Methods. We reviewed 191 patients with a mean age at surgery of 15 years (11 to 23.3). Pedicle screws were placed at the convexity of each curve. Concave screws were inserted at one or two cephalad levels and two caudal levels. The mean operating time was 183 minutes (132 to 276) and the mean blood loss 0.22% of the total blood volume (0.08% to 0.4%). Multimodal monitoring remained stable throughout the operation. The mean hospital stay was 6.8 days (5 to 15). Results. The mean post-operative follow-up was 5.8 years (2.5 to 9.5). There were no neurological complications, deep wound infection, obvious nonunion or need for revision surgery. Upper thoracic scoliosis was corrected by a mean 68.2% (38% to 48%, p < 0.001). Main thoracic scoliosis was corrected by a mean 71% (43.5% to 8.9%, p < 0.001). Lumbar scoliosis was corrected by a mean 72.3% (41% to 90%, p < 0.001). No patient lost more than 3° of correction at follow-up. The thoracic kyphosis improved by 13.1° (-21° to 49°, p < 0.001); the lumbar lordosis remained unchanged (p = 0.58). Coronal imbalance was corrected by a mean 98% (0% to 100%, p < 0.001). Sagittal imbalance was corrected by a mean 96% (20% to 100%, p < 0.001). The Scoliosis Research Society Outcomes Questionnaire score improved from a mean 3.6 to 4.6 (2.4 to 4, p < 0.001); patient satisfaction was a mean 4.9 (4.8 to 5). . Conclusions. This technique carries low neurological and vascular risks because the screws are placed in the pedicles of the convex side of the curve, away from the spinal cord, cauda equina and the aorta. A low implant density (pedicle screw density 1.2, when a density of 2 represents placement of pedicle screws bilaterally at every instrumented segment) achieved satisfactory correction of the scoliosis, an improved thoracic kyphosis and normal global sagittal balance. Both patient satisfaction and functional outcomes were excellent. Cite this article: Bone Joint J 2017;99-B:1080–7


The Journal of Bone & Joint Surgery British Volume
Vol. 85-B, Issue 1 | Pages 95 - 99
1 Jan 2003
Murata Y Takahashi K Yamagata M Hanaoka E Moriya H

Degenerative changes of the knee often cause loss of extension. This may affect aspects of posture such as lumbar lordosis. A total of 366 patients underwent radiological examination of the lumbar spine in a standing position. The knee and body angles were measured by physical examination using a goniometer. Limitation of extension of the knee was significantly greater in patients whose lumbar lordosis was 30° or less. Lumbar lordosis was significantly reduced in patients whose limitation of extension of the knee was more than 5°. It decreased over the age of 70 years, and the limitation of extension of the knee increased over the age of 60 years. Our study indicates that symptoms from the lumbar spine may be caused by degenerative changes in the knee. This may be called the ‘knee-spine syndrome’


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1244 - 1249
1 Sep 2013
Jeon C Park J Chung N Son K Lee Y Kim J

We investigated the spinopelvic morphology and global sagittal balance of patients with a degenerative retrolisthesis or anterolisthesis. A total of 269 consecutive patients with a degenerative spondylolisthesis were included in this study. There were 95 men and 174 women with a mean age of 64.3 years (. sd. 10.5; 40 to 88). A total of 106 patients had a pure retrolisthesis (R group), 130 had a pure anterolisthesis (A group), and 33 had both (R+A group). A backward slip was found in the upper lumbar levels (mostly L2 or L3) with an almost equal gender distribution in both the R and R+A groups. The pelvic incidence and sacral slope of the R group were significantly lower than those of the A (both p < 0.001) and R+A groups (both p < 0.001). The lumbar lordosis of the R+A group was significantly greater than that of the R (p = 0.025) and A groups (p = 0.014). The C7 plumb line of the R group was located more posteriorly than that of the A group (p = 0.023), but was no different from than that of the R+A group (p = 0.422). The location of C7 plumb line did not differ between the three groups (p = 0.068). The spinosacral angle of the R group was significantly smaller than that of the A group (p < 0.001) and R+A group (p < 0.001). Our findings imply that there are two types of degenerative retrolisthesis: one occurs primarily as a result of degeneration in patients with low pelvic incidence, and the other occurs secondarily as a compensatory mechanism in patients with an anterolisthesis and high pelvic incidence. Cite this article: Bone Joint J 2013;95-B:1244–9


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 402 - 409
1 Mar 2016
Sudo H Kaneda K Shono Y Iwasaki N

Aims. A total of 30 patients with thoracolumbar/lumbar adolescent idiopathic scoliosis (AIS) treated between 1989 and 2000 with anterior correction and fusion surgery using dual-rod instrumentation were reviewed. . Patients and Methods. Radiographic parameters and clinical outcomes were compared among patients with lowest instrumented vertebra (LIV) at the lower end vertebra (LEV; EV group) (n = 13) and those treated by short fusion (S group), with LIV one level proximal to EV (n = 17 patients). . Results. The allocation of the surgical technique was determined by the flexibility of the TL/L curves and/or neutral vertebrae located one level above LEV as determined on preoperative radiographs. If these requirements were met a short fusion was performed. The mean follow-up period was 21.4 years (16 to 27). The mean correction rate at final follow-up was significantly lower in the S group (74 . sd. 11%) than in the EV group (88 . sd. 13%) (p = 0.004).Coronal and sagittal balance, thoracic kyphosis, lumbar lordosis, and clinical outcomes evaluated by the Scoliosis Research Society-22 questionnaire scores were equivalent between the two groups. . Conclusion. Short fusion strategy, which uses LIV one level proximal to LEV can be considered as an alternative to the conventional strategy, which includes LEV in the fusion, when highly flexible TL/L curves are confirmed and/or neutral vertebrae are located one level above LEV in patients with thoracolumbar/lumbar AIS curves. Take home message: Short fusion strategy can be considered as an alternative to the conventional strategy in patients with thoracolumbar/lumbar AIS curves undergoing anterior spinal fusion with dual-rod instrumentation. Cite this article: Bone Joint J 2016;98-B:402–9