Aims. Idiopathic scoliosis is the most common spinal deformity in adolescents and children. The aetiology of the disease remains unknown. Previous studies have shown a lower bone mineral density in individuals with idiopathic scoliosis, which may contribute to the causation. The aim of the present study was to compare bone health in adolescents with idiopathic scoliosis with controls. Methods. We included 78 adolescents with idiopathic scoliosis (57 female patients) at a mean age of 13.7 years (8.5 to 19.6) and 52 age- and sex-matched healthy controls (39 female patients) at a mean age of 13.8 years (9.1 to 17.6). Mean skeletal age, estimated according to the Tanner-Whitehouse 3 system (TW3), was 13.4 years (7.4 to 17.8) for those with idiopathic scoliosis, and 13.1 years (7.4 to 16.5) for the controls. Mean Cobb angle for those with idiopathic scoliosis was 29° (SD 11°). All individuals were scanned with dual energy x-ray absorptiometry (DXA) and peripheral quantitative CT (pQCT) of the left radius and tibia to assess bone density. Statistical analyses were performed with independent-samples t-test, the Mann-Whitney U test, and the chi-squared test. Results. Compared with controls, adolescents with idiopathic scoliosis had mean lower DXA values in the left femoral neck (0.94 g/cm. 2. (SD 0.14) vs 1.00 g/cm. 2. (SD 0.15)), left total hip (0.94 g/cm. 2. (SD 0.14) vs 1.01 g/cm. 2. (SD 0.17)), L1 to L4 (0.99 g/cm. 2. (SD 0.15) vs 1.06 g/cm. 2. (SD 0.17)) and distal radius (0.35 g/cm. 2. (SD 0.07) vs 0.39 g/cm. 2. (SD 0.08; all p ≤ 0.024), but not in the mid-radius (0.72 g/cm. 2. vs 0.74 g/cm. 2. ; p = 0.198, independent t-test) and total body less head (1,559 g (SD 380) vs 1,649 g (SD 492; p = 0.0.247, independent t-test). Compared with controls, adolescents with idiopathic scoliosis had lower trabecular volume bone mineral density (BMD) on
This study was designed to test the hypothesis
that the sensory innervation of bone might play an important role
in sensing and responding to low-intensity pulsed ultrasound and
explain its effect in promoting fracture healing. In 112 rats a
standardised mid-shaft tibial fracture was created, supported with
an intramedullary needle and divided into four groups of 28. These
either had a sciatic neurectomy or a patellar tendon resection as
control, and received the ultrasound or not as a sham treatment.
Fracture union, callus mineralisation and remodelling were assessed using
plain radiography, peripheral quantitative computed tomography and
histomorphology. Daily ultrasound treatment significantly increased the rate of
union and the volumetric bone mineral density in the fracture callus
in the neurally intact rats (p = 0.025), but this stimulating effect
was absent in the rats with sciatic neurectomy. Histomorphology
demonstrated faster maturation of the callus in the group treated
with ultrasound when compared with the control group. The results
supported the hypothesis that intact innervation plays an important
role in allowing low-intensity pulsed ultrasound to promote fracture
healing.
Operative fixation is the treatment of choice for a rupture of the distal tendon of biceps. A variety of techniques have been described including transosseous sutures and suture anchors. The poor quality of the bone of the radial tuberosity might affect the load to failure of the tendon repair in early rehabilitation. The aim of this study was to determine the loads to failure of different techniques of fixation and to investigate their association with the bone mineral density of the radial tuberosity. Peripheral quantitative computed tomography was carried out to measure the trabecular and cortical bone mineral density of the radial tuberosity in 40 cadaver specimens. The loads to failure in four different techniques of fixation were determined. The Endobutton-based method showed the highest failure load at 270 N ( The transosseous technique is an easy and cost-saving procedure for fixation of the distal biceps tendon. TwinFix-QuickT 5.0 mm had significantly lower failure loads, which might affect early rehabilitation, particularly in older patients.
The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month. The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model.