Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 10 | Pages 1434 - 1438
1 Oct 2005
Eckardt H Ding M Lind M Hansen ES Christensen KS Hvid I

The re-establishment of vascularity is an early event in fracture healing; upregulation of angiogenesis may therefore promote the formation of bone. We have investigated the capacity of vascular endothelial growth factor (VEGF) to stimulate the formation of bone in an experimental atrophic nonunion model. Three groups of eight rabbits underwent a standard nonunion operation. This was followed by interfragmentary deposition of 100 μg VEGF, carrier alone or autograft. After seven weeks, torsional failure tests and callus size confirmed that VEGF-treated osteotomies had united whereas the carrier-treated osteotomies failed to unite. The biomechanical properties of the groups treated with VEGF and autograft were identical. There was no difference in bone blood flow. We considered that VEGF stimulated the formation of competent bone in an environment deprived of its normal vascularisation and osteoprogenitor cell supply. It could be used to enhance the healing of fractures predisposed to nonunion


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 7 | Pages 1082 - 1087
1 Sep 2004
Becker R Pufe T Kulow S Giessmann N Neumann W Mentlein R Petersen W

Our aim was to investigate vascular endothelial growth factor (VEGF) expression after lacerations of a meniscus in a rabbit model. Specimens of meniscus were examined using immunohistochemistry, enzyme-linked immunoassay and the reverse transcription polymerase chain reaction after one, two, five or ten weeks. In the periphery of the meniscus 90% of the lacerations had healed after five and ten weeks, but no healing was observed in the avascular area. Expression of VEGF protein and VEGF mRNA was found in the meniscus of both the operated and the contralateral sites but both were absent in control rabbits which had not undergone operation. The highest expression of VEGF was found in the avascular area after one week (p < 0.001). It then lessened at both the vascular and avascular areas, but still remained greater in comparison with the control meniscus (p < 0.05). Despite greater expression of VEGF, angiogenesis failed at the inner portion. These findings demonstrated the poor healing response in the avascular area which may not be caused by an intrinsic cellular insufficiency to stimulate angiogenesis


The Journal of Bone & Joint Surgery British Volume
Vol. 86-B, Issue 1 | Pages 143 - 147
1 Jan 2004
Kaya M Wada T Nagoya S Kawaguchi S Isu K Yamashita T

Concomitant tumour resistance (CTR) is a unique phenomenon in which animals harbouring large primary tumours are resistant to the growth of smaller metastatic tumours by systemic angiogenic suppression. To examine this clinically, in ten patients with osteosarcoma, we investigated the effects of removal of the primary tumour on the development of pulmonary metastases, the systemic angiogenesis-inducing ability and the serum levels of several angiogenesis modulators. We found that removal of the primary tumour significantly elevated systemic angiogenesis-inducing ability in five patients who had post-operative recurrence of the tumour. Post-operative elevation of the angiogenesis-induced ability was suppressed by the addition of an angiogenic inhibitor, endostatin. Also, primary removal of the tumour decreased the serum levels of vascular endothelial growth factor and endostatin. These findings suggest, for the first time, the presence of CTR in patients with osteosarcoma for whom postoperative antiangiogenic therapy may be used to prevent the post-operative progression of micrometastases


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 3 | Pages 448 - 453
1 Mar 2010
Benson RT McDonnell SM Knowles HJ Rees JL Carr AJ Hulley PA

The aim of this study was to investigate the occurrence of tissue hypoxia and apoptosis at different stages of tendinopathy and tears of the rotator cuff.

We studied tissue from 24 patients with eight graded stages of either impingement (mild, moderate and severe) or tears of the rotator cuff (partial, small, medium, large and massive) and three controls. Biopsies were analysed using three immunohistochemical techniques, namely antibodies against HIF-1α (a transcription factor produced in a hypoxic environment), BNip3 (a HIF-1α regulated pro-apoptotic protein) and TUNEL (detecting DNA fragmentation in apoptosis).

The HIF-1α expression was greatest in mild impingement and in partial, small, medium and large tears. BNip3 expression increased significantly in partial, small, medium and large tears but was reduced in massive tears. Apoptosis was increased in small, medium, large and massive tears but not in partial tears.

These findings reveal evidence of hypoxic damage throughout the spectrum of pathology of the rotator cuff which may contribute to loss of cells by apoptosis. This provides a novel insight into the causes of degeneration of the rotator cuff and highlights possible options for treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 1 | Pages 116 - 120
1 Jan 2007
Laing AJ Dillon JP Condon E Coffey JC Street JT Wang JH McGuinness AJ Redmond HP

Post-natal vasculogenesis, the process by which vascular committed bone marrow stem cells or endothelial precursor cells migrate, differentiate and incorporate into the nacent endothelium and thereby contribute to physiological and pathological neurovascularisation, has stimulated much interest. Its contribution to neovascularisation of tumours, wound healing and revascularisation associated with ischaemia of skeletal and cardiac muscles is well established. We evaluated the responses of endothelial precursor cells in bone marrow to musculoskeletal trauma in mice.

Bone marrow from six C57 Black 6 mice subjected to a standardised, closed fracture of the femur, was analysed for the combined expression of cell-surface markers stem cell antigen 1 (sca-1+) and stem cell factor receptor, CD117 (c-kit+) in order to identify the endothelial precursor cell population. Immunomagnetically-enriched sca-1+ mononuclear cell (MNCsca-1+) populations were then cultured and examined for functional vascular endothelial differentiation. Bone marrow MNCsca-1+,c-kit+ counts increased almost twofold within 48 hours of the event, compared with baseline levels, before decreasing by 72 hours.

Sca-1+ mononuclear cell populations in culture from samples of bone marrow at 48 hours bound together Ulex Europus-1, and incorporated fluorescent 1,1′-dioctadecyl- 3,3,3,’3′-tetramethylindocarbocyanine perchlorate-labelled acetylated low-density lipoprotein intracellularily, both characteristics of mature endothelium.

Our findings suggest that a systemic provascular response of bone marrow is initiated by musculoskeletal trauma. Its therapeutic manipulation may have implications for the potential enhancement of neovascularisation and the healing of fractures.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 3 | Pages 417 - 420
1 Mar 2007
Bielecki TM Gazdzik TS Arendt J Szczepanski T Kròl W Wielkoszynski T

Platelet-rich plasma is a new inductive therapy which is being increasingly used for the treatment of the complications of bone healing, such as infection and nonunion. The activator for platelet-rich plasma is a mixture of thrombin and calcium chloride which produces a platelet-rich gel.

We analysed the antibacterial effect of platelet-rich gel in vitro by using the platelet-rich plasma samples of 20 volunteers. In vitro laboratory susceptibility to platelet-rich gel was determined by the Kirby-Bauer disc-diffusion method. Baseline antimicrobial activity was assessed by measuring the zones of inhibition on agar plates coated with selected bacterial strains.

Zones of inhibition produced by platelet-rich gel ranged between 6 mm and 24 mm (mean 9.83 mm) in diameter. Platelet-rich gel inhibited the growth of Staphylococcus aureus and was also active against Escherichia coli. There was no activity against Klebsiella pneumoniae, Enterococcus faecalis, and Pseudomonas aeruginosa. Moreover, platelet-rich gel seemed to induce the in vitro growth of Ps. aeruginosa, suggesting that it may cause an exacerbation of infections with this organism. We believe that a combination of the inductive and antimicrobial properties of platelet-rich gel can improve the treatment of infected delayed healing and nonunion.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 966 - 972
1 Jul 2008
Kawasumi M Kitoh H Siwicka KA Ishiguro N

The aim of our study was to investigate the effect of platelet-rich plasma on the proliferation and differentiation of rat bone-marrow cells and to determine an optimal platelet concentration in plasma for osseous tissue engineering. Rat bone-marrow cells embedded in different concentrations of platelet-rich plasma gel were cultured for six days. Their potential for proliferation and osteogenic differentiation was analysed. Using a rat limb-lengthening model, the cultured rat bone-marrow cells with platelet-rich plasma of variable concentrations were transplanted into the distraction gap and the quality of the regenerate bone was evaluated radiologically.

Cellular proliferation was enhanced in all the platelet-rich plasma groups in a dose-dependent manner. Although no significant differences in the production and mRNA expression of alkaline phosphatase were detected among these groups, mature bone regenerates were more prevalent in the group with the highest concentration of platelets.

Our results indicate that a high platelet concentration in the platelet-rich plasma in combination with osteoblastic cells could accelerate the formation of new bone during limb-lengthening procedures.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 8 | Pages 1122 - 1129
1 Aug 2007
Watanabe K Tsuchiya H Sakurakichi K Tomita K

The feasibility of bone transport with bone substitute and the factors which are essential for a successful bone transport are unknown. We studied six groups of 12 Japanese white rabbits. Groups A to D received cylindrical autologous bone segments and groups E and F hydroxyapatite prostheses. The periosteum was preserved in group A so that its segments had a blood supply, cells, proteins and scaffold. Group B had no blood supply. Group C had proteins and scaffold and group D had only scaffold. Group E received hydroxyapatite loaded with recombinant human bone morphogenetic protein-2 and group F had hydroxyapatite alone.

Distraction osteogenesis occurred in groups A to C and E which had osteo-conductive transport segments loaded with osteo-inductive proteins. We conclude that scaffold and proteins are essential for successful bone transport, and that bone substitute can be used to regenerate bone.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 10 | Pages 1392 - 1400
1 Oct 2008
Hayashi R Kondo E Tohyama H Saito T Yasuda K

We report the effects of local administration of osteogenic protein-1 on the biomechanical properties of the overstretched anterior cruciate ligament in an animal model. An injury in the anterior cruciate ligament was created in 45 rabbits. They were divided into three equal groups. In group 1, no treatment was applied, in group II, phosphate-buffered saline was applied around the injured ligament, and in group III, 12.5 μg of osteogenic protein-1 mixed with phosphate-buffered saline was applied around the injured ligament. A control group of 15 rabbits was assembled from randomly-selected injured knees from among the first three groups. Each rabbit was killed at 12 weeks.

The maximum load and stiffness of the anterior cruciate ligament was found to be significantly greater in group III than either group 1 (p = 0.002, p = 0.014) or group II (p = 0.032, p = 0.025). The tensile strength and the tangent modulus of fascicles from the ligament were also significantly greater in group III than either group I (p = 0.002, p = 0.0174) or II (p = 0.005, p = 0.022).

The application of osteogenic protein-1 enhanced the healing in the injured anterior cruciate ligament, but compared with the control group the treated ligament remained lengthened. The administration of osteogenic protein-1 may have a therapeutic role in treating the overstretched anterior cruciate ligament.