Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
The Bone & Joint Journal

Research
Dates
Year From

Year To
The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 4 | Pages 609 - 617
1 May 2001
Wilke H Kemmerich V Claes LE Arand M

Fusion is the main goal in the surgical management of the injured and unstable spine. A wide variety of implants is available to enhance this. Our study was performed to evaluate the stabilising characteristics of several anterior, posterior and combined systems of fixation. Six thoracolumbar (T11 to L2) spines from 13-week-old calves were first tested intact. Then the vertebral body of T13 was removed and the defect replaced and supported by a wooden block to simulate bone grafting. Dorsal implants consisting of a Universal Spine System (USS) fracture system and an AO Fixateur interne (AOFI), and ventral implants comprising of a Kaneda Classic, a Kaneda SR, a prototype of the VentroFix single clamp/single rod construct (SC/SR) and the VentroFix single clamp/double rod construct (SC/DR) were first implanted individually to stabilise the removal of the vertebral body. Simulating the combined anteroposterior stabilisations, all ventral implants were combined with the AOFI. The range of motion (ROM) was measured under loads of up to 7.5 Nm. The load was applied in a custom-made spine tester in the three primary directions while measuring the intervertebral movements using a goniometric linkage system.

The dorsal systems limited ROM in flexion below 0.9° and in extension between 3.3° and 3.6° (median values). The improved Kaneda System SR yielded a mean ROM of 1.8° in flexion and in extension. The median rotation found with the VentroFix (SC/DR) was 3.2° for flexion and 2.8° for extension. Reinforcement of the ventral constructs with a dorsal system reduced the ROM in flexion and extension in all cases to 0.4° and lower.

In rotation, the median ROM of the anterior systems ranged from 2.7° to 5.1° and for the posterior systems from 3.9° to 5.7°, while the combinations provided a ROM of 1.2° to 1.9°. In lateral bending, the posterior implants restricted movement to 1.1°, whereas the anterior implants allowed up to 5.2°. The combined systems provided the highest stability at less than 0.6°.

Our study revealed distinct differences between posterior and anterior approaches in all primary directions. Also, different stabilisation characteristics were found within the anterior and posterior groups. Combinations of these two approaches provided the highest stability in all directions.


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 1 | Pages 162 - 168
1 Jan 1998
Rosenbaum D Becker HP Wilke H Claes LE

To study the effect of ligament injuries and surgical repair we investigated the three-dimensional kinematics of the ankle joint complex and the talocrural and the subtalar joints in seven fresh-frozen lower legs before and after sectioning and reconstruction of the ligaments. A foot movement simulator produced controlled torque in one plane of movement while allowing unconstrained movement in the remainder.

After testing the intact joint the measurements were repeated after simulation of ligament injuries by cutting the anterior talofibular and calcaneofibular ligaments. The tests were repeated after the Evans, Watson-Jones and Chrisman-Snook tenodeses. The range of movement (ROM) was measured using two goniometer systems which determined the relative movement between the tibia and talus (talocrural ROM) and between the talus and calcaneus (subtalar ROM).

Ligament lesions led to increased inversion and internal rotation, predominantly in the talocrural joint. The reconstruction procedures reduced the movement in the ankle joint complex by reducing subtalar movement to a non-physiological level but did not correct the instability of the talocrural joint.