Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 12, Issue 2 | Pages 113 - 120
1 Feb 2023
Cai Y Liang J Chen X Zhang G Jing Z Zhang R Lv L Zhang W Dang X

Aims

This study aimed to explore the diagnostic value of synovial fluid neutrophil extracellular traps (SF-NETs) in periprosthetic joint infection (PJI) diagnosis, and compare it with that of microbial culture, serum ESR and CRP, synovial white blood cell (WBC) count, and polymorphonuclear neutrophil percentage (PMN%).

Methods

In a single health centre, patients with suspected PJI were enrolled from January 2013 to December 2021. The inclusion criteria were: 1) patients who were suspected to have PJI; 2) patients with complete medical records; and 3) patients from whom sufficient synovial fluid was obtained for microbial culture and NET test. Patients who received revision surgeries due to aseptic failure (AF) were selected as controls. Synovial fluid was collected for microbial culture and SF-WBC, SF-PNM%, and SF-NET detection. The receiver operating characteristic curve (ROC) of synovial NET, WBC, PMN%, and area under the curve (AUC) were obtained; the diagnostic efficacies of these diagnostic indexes were calculated and compared.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 85 - 95
27 Jan 2021
Akhbari P Jaggard MK Boulangé CL Vaghela U Graça G Bhattacharya R Lindon JC Williams HRT Gupte CM

Aims

The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF.

Methods

In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups.


Bone & Joint Research
Vol. 9, Issue 8 | Pages 450 - 456
1 Aug 2020
Zhang Z Cai Y Bai G Zhang C Li W Yang B Zhang W

Aims

This study aimed to evaluate calprotectin in synovial fluid for diagnosing chronic prosthetic joint infection (PJI) .

Methods

A total of 63 patients who were suspected of PJI were enrolled. The synovial fluid calprotectin was tested by an enzyme-linked immunosorbent assay (ELISA). Laboratory test data, such as ESR, CRP, synovial fluid white blood cells (SF-WBCs), and synovial fluid polymorphonuclear cells (SF-PMNs), were documented. Chi-squared tests were used to compare the sensitivity and specificity of calprotectin and laboratory tests. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was calculated to determine diagnostic efficacy.


Bone & Joint Research
Vol. 9, Issue 5 | Pages 202 - 210
1 May 2020
Trotter AJ Dean R Whitehouse CE Mikalsen J Hill C Brunton-Sim R Kay GL Shakokani M Durst AZE Wain J McNamara I O’Grady J

Aims

This pilot study tested the performance of a rapid assay for diagnosing prosthetic joint infection (PJI), which measures synovial fluid calprotectin from total hip and knee revision patients.

Methods

A convenience series of 69 synovial fluid samples from revision patients at the Norfolk and Norwich University Hospital were collected intraoperatively (52 hips, 17 knees) and frozen. Synovial fluid calprotectin was measured retrospectively using a new commercially available lateral flow assay for PJI diagnosis (Lyfstone AS) and compared to International Consensus Meeting (ICM) 2018 criteria and clinical case review (ICM-CR) gold standards.


Bone & Joint Research
Vol. 9, Issue 5 | Pages 236 - 241
1 May 2020
Li R Wang C Ji X Zheng Q Li X Ni M Zhang G Chen J

Aims. The purpose of this study was to validate our hypothesis that centrifugation may eliminate false-positive leucocyte esterase (LE) strip test results caused by autoimmune diseases in the diagnosis of knee infection. Methods. Between January 2016 and May 2019, 83 cases, including 33 cases of septic arthritis and 50 cases of aseptic arthritis, were enrolled in this study. To further validate our hypothesis, another 34 cases of inflammatory arthritis from the Department of Rheumatology of our institution were also included. After aspiration, one drop of synovial fluid was applied to LE strips before and after centrifugation. The results were recorded after approximately three minutes according to the different colour grades on the colour chart. The differences of LE results between each cohort were analyzed. Results. Before centrifugation, 46% (23/50) of the LE strip tests in the aseptic arthritis group were false-positives. Most of the false-positive results were due to inflammatory arthritis; after centrifugation, 78.3% (18/23) of the tests yielded negative results. Similar results were observed in cases from the Department of Rheumatology. The sensitivity of the centrifuged LE strip test was 0.818 (0.639 to 0.924), which is still an acceptable level compared with the uncentrifuged results, which yielded a sensitivity of 0.909 (0.745 to 0.976). However, the specificity was increased from 0.540 (0.395 to 0.679) to 0.900 (0.774 to 0.963) after centrifugation. Conclusion. Although inflammatory arthritis can yield a false-positive LE strip test result in the diagnosis of knee infection, centrifugation may eliminate these false-positive results. Cite this article: Bone Joint Res. 2020;9(5):236–241


Bone & Joint Research
Vol. 7, Issue 1 | Pages 12 - 19
1 Jan 2018
Janz V Schoon J Morgenstern C Preininger B Reinke S Duda G Breitbach A Perka CF Geissler S

Objectives

The objective of this study was to develop a test for the rapid (within 25 minutes) intraoperative detection of bacteria from synovial fluid to diagnose periprosthetic joint infection (PJI).

Methods

The 16s rDNA test combines a polymerase chain reaction (PCR) for amplification of 16s rDNA with a lateral flow immunoassay in one fully automated system. The synovial fluid of 77 patients undergoing joint aspiration or primary or revision total hip or knee surgery was prospectively collected. The cohort was divided into a proof-of-principle cohort (n = 17) and a validation cohort (n = 60). Using the proof-of-principle cohort, an optimal cut-off for the discrimination between PJI and non-PJI samples was determined. PJI was defined as detection of the same bacterial species in a minimum of two microbiological samples, positive histology, and presence of a sinus tract or intra-articular pus.