Advertisement for orthosearch.org.uk
Results 1 - 18 of 18
Results per page:
Bone & Joint Research
Vol. 12, Issue 12 | Pages 712 - 721
4 Dec 2023
Dantas P Gonçalves SR Grenho A Mascarenhas V Martins J Tavares da Silva M Gonçalves SB Guimarães Consciência J

Aims. Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. Methods. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis. Results. The studies assessed different hip conditions like labrum status, the biomechanical effect of the cam, femoral version, acetabular coverage, and the effect of rim trimming. The testing and loading conditions were also quite diverse, and this disparity limits direct comparisons between the different researches. With normal anatomy the mean contact pressures ranged from 1.54 to 4.4 MPa, and the average peak contact pressures ranged from 2 to 9.3 MPa. Labral tear or resection showed an increase in contact pressures that diminished after repair or reconstruction of the labrum. Complete cam resection also decreased the contact pressure, and acetabular rim resection of 6 mm increased the contact pressure at the acetabular base. Conclusion. To date there is no standardized methodology to access hip contact biomechanics in hip arthroscopy, or with the preservation of the periarticular soft-tissues. A tendency towards improved biomechanics (lower contact pressures) was seen with labral repair and reconstruction techniques as well as with cam correction. Cite this article: Bone Joint Res 2023;12(12):712–721


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims

Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs).

Methods

A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims

Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning.

Methods

3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 594 - 601
24 Sep 2021
Karunaseelan KJ Dandridge O Muirhead-Allwood SK van Arkel RJ Jeffers JRT

Aims

In the native hip, the hip capsular ligaments tighten at the limits of range of hip motion and may provide a passive stabilizing force to protect the hip against edge loading. In this study we quantified the stabilizing force vectors generated by capsular ligaments at extreme range of motion (ROM), and examined their ability to prevent edge loading.

Methods

Torque-rotation curves were obtained from nine cadaveric hips to define the rotational restraint contributions of the capsular ligaments in 36 positions. A ligament model was developed to determine the line-of-action and effective moment arms of the medial/lateral iliofemoral, ischiofemoral, and pubofemoral ligaments in all positions. The functioning ligament forces and stiffness were determined at 5 Nm rotational restraint. In each position, the contribution of engaged capsular ligaments to the joint reaction force was used to evaluate the net force vector generated by the capsule.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 574 - 590
7 Sep 2021
Addai D Zarkos J Pettit M Sunil Kumar KH Khanduja V

Outcomes following different types of surgical intervention for femoroacetabular impingement (FAI) are well reported individually but comparative data are deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyze the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO), and surgical hip dislocation (SHD). This SR was registered with PROSPERO. An electronic database search of PubMed, Medline, and EMBASE for English and German language articles over the last 20 years was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We specifically analyzed and compared changes in patient-reported outcome measures (PROMs), α-angle, rate of complications, rate of revision, and conversion to total hip arthroplasty (THA). A total of 48 articles were included for final analysis with a total of 4,384 hips in 4,094 patients. All subgroups showed a significant correction in mean α angle postoperatively with a mean change of 28.8° (95% confidence interval (CI) 21 to 36.5; p < 0.01) after AMO, 21.1° (95% CI 15.1 to 27; p < 0.01) after SHD, and 20.5° (95% CI 16.1 to 24.8; p < 0.01) after HA. The AMO group showed a significantly higher increase in PROMs (3.7; 95% CI 3.2 to 4.2; p < 0.01) versus arthroscopy (2.5; 95% CI 2.3 to 2.8; p < 0.01) and SHD (2.4; 95% CI 1.5 to 3.3; p < 0.01). However, the rate of complications following AMO was significantly higher than HA and SHD. All three surgical approaches offered significant improvements in PROMs and radiological correction of cam deformities. All three groups showed similar rates of revision procedures but SHD had the highest rate of conversion to a THA. Revision rates were similar for all three revision procedures.


Bone & Joint Research
Vol. 9, Issue 12 | Pages 857 - 869
1 Dec 2020
Slullitel PA Coutu D Buttaro MA Beaule PE Grammatopoulos G

As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells.

Cite this article: Bone Joint Res 2020;9(12):857–869.


Bone & Joint Research
Vol. 9, Issue 4 | Pages 173 - 181
1 Apr 2020
Schon J Chahla J Paudel S Manandhar L Feltham T Huard J Philippon M Zhang Z

Aims

Femoroacetabular impingement (FAI) is a potential cause of hip osteoarthritis (OA). The purpose of this study was to investigate the expression profile of matrix metalloproteinases (MMPs) in the labral tissue with FAI pathology.

Methods

In this study, labral tissues were collected from four FAI patients arthroscopically and from three normal hips of deceased donors. Proteins extracted from the FAI and normal labrums were separately applied for MMP array to screen the expression of seven MMPs and three tissue inhibitors of metalloproteinases (TIMPs). The expression of individual MMPs and TIMPs was quantified by densitometry and compared between the FAI and normal labral groups. The expression of selected MMPs and TIMPs was validated and localized in the labrum with immunohistochemistry.


Bone & Joint Research
Vol. 7, Issue 7 | Pages 440 - 446
1 Jul 2018
Woods AK Broomfield J Monk P Vollrath F Glyn-Jones S

Objectives

The aim of this study was to investigate the structural integrity of torn and non-torn human acetabular labral tissue.

Methods

A total of 47 human labral specimens were obtained from a biobank. These included 22 torn specimens and 25 control specimens from patients undergoing total hip arthroplasty with macroscopically normal labra. The specimens underwent dynamic shear analysis using a rheometer to measure storage modulus, as an indicator of structural integrity.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives

The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field.

Methods

The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only.


Bone & Joint Research
Vol. 5, Issue 11 | Pages 586 - 593
1 Nov 2016
Rakhra KS Bonura AA Nairn R Schweitzer ME Kolanko NM Beaule PE

Objectives

The purpose of this study was to compare the thickness of the hip capsule in patients with surgical hip disease, either with cam-femoroacetabular impingement (FAI) or non-FAI hip pathology, with that of asymptomatic control hips.

Methods

A total of 56 hips in 55 patients underwent a 3Tesla MRI of the hip. These included 40 patients with 41 hips with arthroscopically proven hip disease (16 with cam-FAI; nine men, seven women; mean age 39 years, 22 to 58) and 25 with non-FAI chondrolabral pathology (four men, 21 women; mean age 40 years, 18 to 63) as well as 15 asymptomatic volunteers, whose hips served as controls (ten men, five women; mean age 62 years, 33 to 77). The maximal capsule thickness was measured anteriorly and superiorly, and compared within and between the three groups with a gender subanalysis using student’s t-test. The correlation between alpha angle and capsule thickness was determined using Pearson’s correlation coefficient.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 387 - 392
1 Sep 2016
Morris WZ Fowers CA Yuh RT Gebhart JJ Salata MJ Liu RW

Objectives

The spinopelvic relationship (including pelvic incidence) has been shown to influence pelvic orientation, but its potential association with femoroacetabular impingement has not been thoroughly explored. The purpose of this study was to prove the hypothesis that decreasing pelvic incidence is associated with increased risk of cam morphology.

Methods

Two matching cohorts were created from a collection of cadaveric specimens with known pelvic incidences: 50 subjects with the highest pelvic incidence (all subjects > 60°) and 50 subjects with the lowest pelvic incidence (all subjects < 35°). Femoral version, acetabular version, and alpha angles were directly measured from each specimen bilaterally. Cam morphology was defined as alpha angle > 55°. Differences between the two cohorts were analysed with a Student’s t-test and the difference in incidence of cam morphology was assessed using a chi-squared test. The significance level for all tests was set at p < 0.05.


Bone & Joint Research
Vol. 5, Issue 2 | Pages 66 - 72
1 Feb 2016
Gebhart JJ Weinberg DS Bohl MS Liu RW

Objectives

Sagittal alignment of the lumbosacral spine, and specifically pelvic incidence (PI), has been implicated in the development of spine pathology, but generally ignored with regards to diseases of the hip. We aimed to determine if increased PI is correlated with higher rates of hip osteoarthritis (HOA). The effect of PI on the development of knee osteoarthritis (KOA) was used as a negative control.

Methods

We studied 400 well-preserved cadaveric skeletons ranging from 50 to 79 years of age at death. Each specimen’s OA of the hip and knee were graded using a previously described method. PI was measured from standardised lateral photographs of reconstructed pelvises. Multiple regression analysis was performed to determine the relationship between age and PI with HOA and KOA.


Bone & Joint Research
Vol. 4, Issue 2 | Pages 17 - 22
1 Feb 2015
Vo A Beaule PE Sampaio ML Rotaru C Rakhra KS

Objectives

The purpose of this study was to investigate whether the femoral head–neck contour, characterised by the alpha angle, varies with the stage of physeal maturation using MRI evaluation of an asymptomatic paediatric population.

Methods

Paediatric volunteers with asymptomatic hips were recruited to undergo MRI of both hips. Femoral head physes were graded from 1 (completely open) to 6 (completely fused). The femoral head–neck contour was evaluated using the alpha angle, measured at the 3:00 (anterior) and 1:30 (anterosuperior) positions and correlated with physeal grade, with gender sub-analysis performed.


Bone & Joint Research
Vol. 4, Issue 1 | Pages 6 - 10
1 Jan 2015
Goudie ST Deakin AH Deep K

Objectives

Acetabular component orientation in total hip arthroplasty (THA) influences results. Intra-operatively, the natural arthritic acetabulum is often used as a reference to position the acetabular component. Detailed information regarding its orientation is therefore essential. The aim of this study was to identify the acetabular inclination and anteversion in arthritic hips.

Methods

Acetabular inclination and anteversion in 65 symptomatic arthritic hips requiring THA were measured using a computer navigation system. All patients were Caucasian with primary osteoarthritis (29 men, 36 women). The mean age was 68 years (SD 8). Mean inclination was 50.5° (SD 7.8) in men and 52.1° (SD 6.7) in women. Mean anteversion was 8.3° (SD 8.7) in men and 14.4° (SD 11.6) in women.


Bone & Joint Research
Vol. 3, Issue 11 | Pages 321 - 327
1 Nov 2014
Palmer AJR Ayyar-Gupta V Dutton SJ Rombach I Cooper CD Pollard TC Hollinghurst D Taylor A Barker KL McNally EG Beard DJ Andrade AJ Carr AJ Glyn-Jones S

Aims

Femoroacetabular Junction Impingement (FAI) describes abnormalities in the shape of the femoral head–neck junction, or abnormalities in the orientation of the acetabulum. In the short term, FAI can give rise to pain and disability, and in the long-term it significantly increases the risk of developing osteoarthritis. The Femoroacetabular Impingement Trial (FAIT) aims to determine whether operative or non-operative intervention is more effective at improving symptoms and preventing the development and progression of osteoarthritis.

Methods

FAIT is a multicentre superiority parallel two-arm randomised controlled trial comparing physiotherapy and activity modification with arthroscopic surgery for the treatment of symptomatic FAI. Patients aged 18 to 60 with clinical and radiological evidence of FAI are eligible. Principal exclusion criteria include previous surgery to the index hip, established osteoarthritis (Kellgren–Lawrence ≥ 2), hip dysplasia (centre-edge angle < 20°), and completion of a physiotherapy programme targeting FAI within the previous 12 months. Recruitment will take place over 24 months and 120 patients will be randomised in a 1:1 ratio and followed up for three years. The two primary outcome measures are change in hip outcome score eight months post-randomisation (approximately six-months post-intervention initiation) and change in radiographic minimum joint space width 38 months post-randomisation. ClinicalTrials.gov: NCT01893034.

Cite this article: Bone Joint Res 2014;3:321–7.


Bone & Joint Research
Vol. 2, Issue 2 | Pages 33 - 40
1 Feb 2013
Palmer AJR Thomas GER Pollard TCB Rombach I Taylor A Arden N Beard DJ Andrade AJ Carr AJ Glyn-Jones S

Objectives

The number of surgical procedures performed each year to treat femoroacetabular impingement (FAI) continues to rise. Although there is evidence that surgery can improve symptoms in the short-term, there is no evidence that it slows the development of osteoarthritis (OA). We performed a feasibility study to determine whether patient and surgeon opinion was permissive for a Randomised Controlled Trial (RCT) comparing operative with non-operative treatment for FAI.

Methods

Surgeon opinion was obtained using validated questionnaires at a Specialist Hip Meeting (n = 61, 30 of whom stated that they routinely performed FAI surgery) and patient opinion was obtained from clinical patients with a new diagnosis of FAI (n = 31).


Bone & Joint Research
Vol. 1, Issue 10 | Pages 245 - 257
1 Oct 2012
Tibor LM Leunig M

Femoroacetabular impingement (FAI) causes pain and chondrolabral damage via mechanical overload during movement of the hip. It is caused by many different types of pathoanatomy, including the cam ‘bump’, decreased head–neck offset, acetabular retroversion, global acetabular overcoverage, prominent anterior–inferior iliac spine, slipped capital femoral epiphysis, and the sequelae of childhood Perthes’ disease.

Both evolutionary and developmental factors may cause FAI. Prevalence studies show that anatomic variations that cause FAI are common in the asymptomatic population. Young athletes may be predisposed to FAI because of the stress on the physis during development. Other factors, including the soft tissues, may also influence symptoms and chondrolabral damage.

FAI and the resultant chondrolabral pathology are often treated arthroscopically. Although the results are favourable, morphologies can be complex, patient expectations are high and the surgery is challenging. The long-term outcomes of hip arthroscopy are still forthcoming and it is unknown if treatment of FAI will prevent arthrosis.