Aims. Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for
Aims. Appropriate
Objectives. In order to address acetabular defects, porous metal revision
Objectives. The determination of the volumetric polyethylene wear on explanted material requires complicated equipment, which is not available in many research institutions. Our aim in this study was to present and validate a method that only requires a set of polyetheretherketone balls and a laboratory balance to determine wear. Methods. The insert to be measured was placed on a balance, and a ball of the appropriate diameter was inserted. The cavity remaining between the ball and insert caused by wear was filled with contrast medium and the weight of the contrast medium was recorded. The volume was calculated from the known density of the liquid. The precision, inter- and intraobserver reliability, were determined by four investigators on four days using nine inserts with specified wear (0.094 ml to 1.626 ml), and the intra-class correlation coefficient was calculated. The feasibility of using this method in routine clinical practice and the time required for measurement were tested on 84 explanted inserts by one investigator. Results. In order to get the mean for all investigators and determinations, the deviation between the measured and specified wear was -0.08 ml . (sd. 0.12; -0.21 to 0.11). The interobserver reliability was 0.989 ml (95% confidence interval (CI) 0.964 to 0.997) and the intraobserver reliability was 0.941 for observer 1 (95% CI 0.846 to 0.985), 0.983 for observer 2 (95% CI 0.956 to 0.995), 0.939 for observer 3 (95% CI 0.855 to 0.984), and 0.934 for observer 4 (95% CI 0.790 to 0.984). The mean time required to examine the samples was two minutes . (sd. 2; 1 to 5). Conclusion. The method presented here was shown to be sufficiently precise for many settings and is a cost-effective and quick method of determining the volumetric wear of explanted
To investigate the effect of polyethylene manufacturing characteristics and irradiation dose on the survival of cemented and reverse hybrid total hip arthroplasties (THAs). In this registry study, data from the National Joint Registry of England, Wales, Northern Ireland and the Isle of Man (NJR) were linked with manufacturing data supplied by manufacturers. The primary endpoint was revision of any component. Cox proportional hazard regression was a primary analytic approach adjusting for competing risk of death, patient characteristics, head composition, and stem fixation.Aims
Methods
The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).Aims
Methods
Aims. Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with
Aims. Manual impaction, with a mallet and introducer, remains the standard method of installing cementless acetabular cups during total hip arthroplasty (THA). This study aims to quantify the accuracy and precision of manual impaction strikes during the seating of an
Aims. Cementless
Aims. This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH). Methods. The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type.
Objectives. Mechanical wear and corrosion at the head-stem junction of total hip arthroplasties (THAs) (trunnionosis) have been implicated in their early revision, most commonly in metal-on-metal (MOM) hips. We can isolate the role of the head-stem junction as the predominant source of metal release by investigating non-MOM hips; this can help to identify clinically significant volumes of material loss and corrosion from these surfaces. Methods. In this study we examined a series of 94 retrieved metal-on-polyethylene (MOP) hips for evidence of corrosion and material loss at the taper junction using a well published visual grading method and an established roundness-measuring machine protocol. Hips were retrieved from 74 male and 20 female patients with a median age of 57 years (30 to 76) and a median time to revision of 215 months (2 to 324). The reasons for revision were loosening of both the
Objectives.
Objective. This study compared the primary stability of two commercially
available
Objectives. The high revision rates of the DePuy Articular Surface Replacement (ASR) and the DePuy ASR XL (the total hip arthroplasty (THA) version) have led to questions over the viability of metal-on-metal (MoM) hip joints. Some designs of MoM hip joint do, however, have reasonable mid-term performance when implanted in appropriate patients. Investigations into the reasons for implant failure are important to offer help with the choice of implants and direction for future implant designs. One way to assess the performance of explanted hip prostheses is to measure the wear (in terms of material loss) on the joint surfaces. Methods. In this study, a coordinate measuring machine (CMM) was used to measure the wear on five failed cementless Biomet Magnum/ReCap/ Taperloc large head MoM THAs, along with one Biomet ReCap resurfacing joint. Surface roughness measurements were also taken. The reason for revision of these implants was pain and/or adverse reaction to metal debris (ARMD) and/or elevated blood metal ion levels. Results. The mean wear rate of the articulating surfaces of the heads and
Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.
99mTc-UBI29-41-Cy5 specificity for Aims
Methods
Orthopaedic surgery uses many varied instruments with high-speed, high-impact, thermal energy and sometimes heavy instruments, all of which potentially result in aerosolization of contaminated blood, tissue, and bone, raising concerns for clinicians’ health. This study quantifies the aerosol exposure by measuring the number and size distribution of the particles reaching the lead surgeon during key orthopaedic operations. The aerosol yield from 17 orthopaedic open surgeries (on the knee, hip, and shoulder) was recorded at the position of the lead surgeon using an Aerodynamic Particle Sizer (APS; 0.5 to 20 μm diameter particles) sampling at 1 s time resolution. Through timestamping, detected aerosol was attributed to specific procedures.Aims
Methods
Objectives. Pseudotumours (abnormal peri-prosthetic soft-tissue reactions)
following metal-on-metal hip resurfacing arthroplasty (MoMHRA) have
been associated with elevated metal ion levels, suggesting that
excessive wear may occur due to edge-loading of these MoM implants.
This study aimed to quantify in vivo edge-loading
in MoMHRA patients with and without pseudotumours during functional
activities. Methods. The duration and magnitude of edge-loading in vivo was
quantified during functional activities by combining the dynamic
hip joint segment contact force calculated from the three-dimensional
(3D) motion analysis system with the 3D reconstruction of orientation
of the
Objectives. To quantify and compare peri-acetabular bone mineral density
(BMD) between a monoblock
Objectives. An ongoing prospective study to investigate failing metal-on-metal
hip prostheses was commenced at our centre in 2008. We report on
the results of the analysis of the first consecutive 126 failed
mated total hip prostheses from a single manufacturer. Methods. Analysis was carried out using highly accurate coordinate measuring
to calculate volumetric and linear rates of the articular bearing
surfaces and also the surfaces of the taper junctions. The relationship
between taper wear rates and a number of variables, including bearing
diameter and orientation of the
Fractures of the proximal femur are one of the
greatest challenges facing the medical community, constituting a
heavy socioeconomic burden worldwide. Controversy exists regarding
the optimal treatment for independent patients with displaced intracapsular fractures
of the proximal femur. The recognised alternatives are hemiarthroplasty
and total hip replacement. At present there is no established standard
of care, with both types of arthroplasty being used in many centres.
The principal advantages of total hip replacement are a functional
benefit over hemiarthroplasty and a reduced risk of revision surgery.
The principal criticism is the increased risk of dislocation. We
believe that an alternative