Advertisement for orthosearch.org.uk
Results 1 - 20 of 58
Results per page:
Bone & Joint Research
Vol. 11, Issue 3 | Pages 162 - 170
14 Mar 2022
Samvelyan HJ Huesa C Cui L Farquharson C Staines KA

Aims. Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2. -/-. ) display accelerated bone growth. Methods. We examined vulnerability of Socs2. -/-. mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT. Results. We observed a significant increase in mean number (wild-type (WT) DMM: 532 (SD 56); WT sham: 495 (SD 45); knockout (KO) DMM: 169 (SD 49); KO sham: 187 (SD 56); p < 0.001) and density (WT DMM: 2.2 (SD 0.9); WT sham: 1.2 (SD 0.5); KO DMM: 13.0 (SD 0.5); KO sham: 14.4 (SD 0.7)) of growth plate bridges in Socs2. -/-. in comparison with WT. Histological examination of WT and Socs2. -/-. knees revealed articular cartilage damage with DMM in comparison to sham. Articular cartilage lesion severity scores (mean and maximum) were similar in WT and Socs2. -/-. mice with either DMM, or with ageing. Micro-CT analysis revealed significant decreases in SCB thickness, epiphyseal trabecular number, and thickness in the medial compartment of Socs2. -/-. , in comparison with WT (p < 0.001). DMM had no effect on the SCB thickness in comparison with sham in either genotype. Conclusion. Together, these data suggest that enhanced GH signalling through SOCS2 deletion accelerates growth plate fusion, however this has no effect on OA vulnerability in this model. Cite this article: Bone Joint Res 2022;11(3):162–170


Bone & Joint Research
Vol. 7, Issue 2 | Pages 124 - 130
1 Feb 2018
Coric D Bullard DE Patel VV Ryaby JT Atkinson BL He D Guyer RD

Objectives. Pulsed electromagnetic field (PEMF) stimulation was evaluated after anterior cervical discectomy and fusion (ACDF) procedures in a randomized, controlled clinical study performed for United States Food and Drug Administration (FDA) approval. PEMF significantly increased fusion rates at six months, but 12-month fusion outcomes for subjects at elevated risk for pseudoarthrosis were not thoroughly reported. The objective of the current study was to evaluate the effect of PEMF treatment on subjects at increased risk for pseudoarthrosis after ACDF procedures. Methods. Two evaluations were performed that compared fusion rates between PEMF stimulation and a historical control (160 subjects) from the FDA investigational device exemption (IDE) study: a post hoc (PH) analysis of high-risk subjects from the FDA study (PH PEMF); and a multicentre, open-label (OL) study consisting of 274 subjects treated with PEMF (OL PEMF). Fisher’s exact test and multivariate logistic regression was used to compare fusion rates between PEMF-treated subjects and historical controls. Results. In separate comparisons of PH PEMF and OL PEMF groups to the historical control group, PEMF treatment significantly (p < 0.05, Fisher’s exact test) increased the fusion rate at six and 12 months for certain high-risk subjects who had at least one clinical risk factor of being elderly, a nicotine user, osteoporotic, or diabetic; and for those with at least one clinical risk factor and who received at least a two- or three-level arthrodesis. Conclusion. Adjunctive PEMF treatment can be recommended for patients who are at high risk for pseudoarthrosis. Cite this article: D. Coric, D. E. Bullard, V. V. Patel, J. T. Ryaby, B. L. Atkinson, D. He, R. D. Guyer. Pulsed electromagnetic field stimulation may improve fusion rates in cervical arthrodesis in high-risk populations. Bone Joint Res 2018;7:124–130. DOI: 10.1302/2046-3758.72.BJR-2017-0221.R1


Bone & Joint Research
Vol. 12, Issue 6 | Pages 387 - 396
26 Jun 2023
Xu J Si H Zeng Y Wu Y Zhang S Shen B

Aims. Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. Methods. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes. Results. TWAS identified 295 genes with permutation p-values < 0.05 for skeletal muscle and 79 genes associated for the whole blood, such as RCHY1 (PTWAS = 0.001). Those genes were enriched in 112 gene ontology (GO) terms and five Kyoto Encyclopedia of Genes and Genomes pathways, such as ‘chemical carcinogenesis - reactive oxygen species’ (LogP value = −2.139). Further comparing the TWAS significant genes with the differentially expressed genes identified by mRNA expression profiles of LSS found 18 overlapped genes, such as interleukin 15 receptor subunit alpha (IL15RA) (PTWAS = 0.040, PmRNA = 0.010). Moreover, 71 common GO terms were detected for the enrichment results of TWAS and mRNA expression profiles, such as negative regulation of cell differentiation (LogP value = −2.811). Conclusion. This study revealed the genetic mechanism behind the pathological changes in LSS, and may provide novel insights for the early diagnosis and intervention of LSS. Cite this article: Bone Joint Res 2023;12(6):387–396


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims. Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Methods. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis. Results. The TWAS detected 420 DCS genes with p < 0.05 in skeletal muscle, such as ribosomal protein S15A (RPS15A) (PTWAS = 0.001), and 110 genes in whole blood, such as selectin L (SELL) (PTWAS = 0.001). Comparison with the DCS RNA expression profile identified 12 common genes, including Apelin Receptor (APLNR) (PTWAS = 0.001, PDEG = 0.025). In total, 148 DCS-enriched Gene Ontology (GO) terms were identified, such as mast cell degranulation (GO:0043303); 15 DCS-enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified, such as the sphingolipid signalling pathway (ko04071). Nine terms, such as degradation of the extracellular matrix (R-HSA-1474228), were common to the TWAS enrichment results and the RNA expression profile. Conclusion. Our results identify putative susceptibility genes; these findings provide new ideas for exploration of the genetic mechanism of DCS development and new targets for preclinical intervention and clinical treatment. Cite this article: Bone Joint Res 2023;12(1):80–90


Bone & Joint Research
Vol. 7, Issue 1 | Pages 28 - 35
1 Jan 2018
Huang H Nightingale RW Dang ABC

Objectives. Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine. Methods. A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion. Results. Peak anterior longitudinal ligament (ALL) strain ranged from 0.106 to 0.382 in a normal spine, and from 0.116 to 0.399 in a fused cervical spine. Strain increased from cranial to caudal levels. The mean strain increase in the motion segment immediately adjacent to the site of fusion from C2-C3 through C5-C6 was 26.1% and 50.8% following single- and two-level cervical fusion, respectively (p = 0.03, unpaired two-way t-test). Peak cervical strains following various lumbar-fusion procedures were 1.0% less than those seen in a healthy spine (p = 0.61, two-way ANOVA). Conclusion. Cervical arthrodesis increases peak ALL strain in the adjacent motion segments. C3-4 experiences greater changes in strain than C6-7. Lumbar fusion did not have a significant effect on cervical spine strain. Cite this article: H. Huang, R. W. Nightingale, A. B. C. Dang. Biomechanics of coupled motion in the cervical spine during simulated whiplash in patients with pre-existing cervical or lumbar spinal fusion: A Finite Element Study. Bone Joint Res 2018;7:28–35. DOI: 10.1302/2046-3758.71.BJR-2017-0100.R1


Bone & Joint Research
Vol. 10, Issue 5 | Pages 298 - 306
1 May 2021
Dolkart O Kazum E Rosenthal Y Sher O Morag G Yakobson E Chechik O Maman E

Aims. Rotator cuff (RC) tears are common musculoskeletal injuries which often require surgical intervention. Noninvasive pulsed electromagnetic field (PEMF) devices have been approved for treatment of long-bone fracture nonunions and as an adjunct to lumbar and cervical spine fusion surgery. This study aimed to assess the effect of continuous PEMF on postoperative RC healing in a rat RC repair model. Methods. A total of 30 Wistar rats underwent acute bilateral supraspinatus tear and repair. A miniaturized electromagnetic device (MED) was implanted at the right shoulder and generated focused PEMF therapy. The animals’ left shoulders served as controls. Biomechanical, histological, and bone properties were assessed at three and six weeks. Results. Extension of the tendon from preload to the maximum load to failure was significantly better in the PEMF-treated shoulders at three weeks compared to controls (p = 0.038). The percentage strain was significantly higher in the PEMF group at both timepoints (p = 0.037). Collagen organization was significantly better (p = 0.034) as was tissue mineral density in the PEMF-treated group at three weeks (p = 0.028). Tendon immunohistochemistry revealed a prominent increase in type I collagen at the repair site at three weeks following continuous PEMF treatment compared with controls. None of the other tested parameters differed between the groups. Conclusion. MED-generated PEMF may enhance early postoperative tendon-to-bone healing in an acute rat supraspinatus detachment and repair model. Superior biomechanical elasticity parameters together with better collagen organization suggest improved RC healing. Cite this article: Bone Joint Res 2021;10(5):298–306


Bone & Joint Research
Vol. 5, Issue 4 | Pages 145 - 152
1 Apr 2016
Bodalia PN Balaji V Kaila R Wilson L

Objectives. We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis. Methods. The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion. Results. A total of six studies (three prospective and three retrospective) reporting on the use of BMP2 met the inclusion criteria (203 patients). Of these, four provided a comparison of BMP2 and bone graft whereas the other two solely investigated the use of BMP2. The primary outcome was seen in 92.3% (108/117) of patients following surgery with BMP2. Although none of the studies showed superiority of BMP2 to bone graft for fusion, its use was associated with a statistically quicker time to achieving fusion. BMP2 did not appear to increase the risk of complication. Conclusion. The use of BMP2 is both safe and effective within the revision setting, ideally in cases where bone graft is unavailable or undesirable. Further research is required to define its optimum role. Cite this article: Mr P. Bodalia. Effectiveness and safety of recombinant human bone morphogenetic protein-2 for adults with lumbar spine pseudarthrosis following spinal fusion surgery: A systematic review. Bone Joint Res 2016;5:145–152. DOI: 10.1302/2046-3758.54.2000418


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 245 - 255
3 Apr 2023
Ryu S So J Ha Y Kuh S Chin D Kim K Cho Y Kim K

Aims

To determine the major risk factors for unplanned reoperations (UROs) following corrective surgery for adult spinal deformity (ASD) and their interactions, using machine learning-based prediction algorithms and game theory.

Methods

Patients who underwent surgery for ASD, with a minimum of two-year follow-up, were retrospectively reviewed. In total, 210 patients were included and randomly allocated into training (70% of the sample size) and test (the remaining 30%) sets to develop the machine learning algorithm. Risk factors were included in the analysis, along with clinical characteristics and parameters acquired through diagnostic radiology.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 644 - 653
10 Oct 2023
Hinz N Butscheidt S Jandl NM Rohde H Keller J Beil FT Hubert J Rolvien T

Aims

The management of periprosthetic joint infection (PJI) remains a major challenge in orthopaedic surgery. In this study, we aimed to characterize the local bone microstructure and metabolism in a clinical cohort of patients with chronic PJI.

Methods

Periprosthetic femoral trabecular bone specimens were obtained from patients suffering from chronic PJI of the hip and knee (n = 20). Microbiological analysis was performed on preoperative joint aspirates and tissue specimens obtained during revision surgery. Microstructural and cellular bone parameters were analyzed in bone specimens by histomorphometry on undecalcified sections complemented by tartrate-resistant acid phosphatase immunohistochemistry. Data were compared with control specimens obtained during primary arthroplasty (n = 20) and aseptic revision (n = 20).


Bone & Joint Research
Vol. 12, Issue 7 | Pages 412 - 422
4 Jul 2023
Ferguson J Bourget-Murray J Hotchen AJ Stubbs D McNally M

Aims

Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up.

Methods

A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite ceramic containing gentamicin (Group CG). Outcome measures were infection recurrence, wound leakage, and subsequent fracture involving the treated segment. Bone-void filling was assessed radiologically at a minimum of six months post-surgery.


Bone & Joint Research
Vol. 12, Issue 6 | Pages 362 - 371
1 Jun 2023
Xu D Ding C Cheng T Yang C Zhang X

Aims

The present study aimed to investigate whether patients with inflammatory bowel disease (IBD) undergoing joint arthroplasty have a higher incidence of adverse outcomes than those without IBD.

Methods

A comprehensive literature search was conducted to identify eligible studies reporting postoperative outcomes in IBD patients undergoing joint arthroplasty. The primary outcomes included postoperative complications, while the secondary outcomes included unplanned readmission, length of stay (LOS), joint reoperation/implant revision, and cost of care. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a random-effects model when heterogeneity was substantial.


Bone & Joint Research
Vol. 12, Issue 11 | Pages 677 - 690
1 Nov 2023
Wang X Jiang W Pan K Tao L Zhu Y

Aims

Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis.

Methods

The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 433 - 446
7 Jul 2023
Guo L Guo H Zhang Y Chen Z Sun J Wu G Wang Y Zhang Y Wei X Li P

Aims

To explore the novel molecular mechanisms of histone deacetylase 4 (HDAC4) in chondrocytes via RNA sequencing (RNA-seq) analysis.

Methods

Empty adenovirus (EP) and a HDAC4 overexpression adenovirus were transfected into cultured human chondrocytes. The cell survival rate was examined by real-time cell analysis (RTCA) and EdU and flow cytometry assays. Cell biofunction was detected by Western blotting. The expression profiles of messenger RNAs (mRNAs) in the EP and HDAC4 transfection groups were assessed using whole-transcriptome sequencing (RNA-seq). Volcano plot, Gene Ontology, and pathway analyses were performed to identify differentially expressed genes (DEGs). For verification of the results, the A289E/S246/467/632 A sites of HDAC4 were mutated to enhance the function of HDAC4 by increasing HDAC4 expression in the nucleus. RNA-seq was performed to identify the molecular mechanism of HDAC4 in chondrocytes. Finally, the top ten DEGs associated with ribosomes were verified by quantitative polymerase chain reaction (QPCR) in chondrocytes, and the top gene was verified both in vitro and in vivo.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 214 - 225
3 May 2024
Groven RVM Kuik C Greven J Mert Ü Bouwman FG Poeze M Blokhuis TJ Huber-Lang M Hildebrand F Cillero-Pastor B van Griensven M

Aims

The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies.

Methods

A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase.


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 169 - 183
15 Apr 2024
Gil-Melgosa L Llombart-Blanco R Extramiana L Lacave I Abizanda G Miranda E Agirre X Prósper F Pineda-Lucena A Pons-Villanueva J Pérez-Ruiz A

Aims

Rotator cuff (RC) injuries are characterized by tendon rupture, muscle atrophy, retraction, and fatty infiltration, which increase injury severity and jeopardize adequate tendon repair. Epigenetic drugs, such as histone deacetylase inhibitors (HDACis), possess the capacity to redefine the molecular signature of cells, and they may have the potential to inhibit the transformation of the fibro-adipogenic progenitors (FAPs) within the skeletal muscle into adipocyte-like cells, concurrently enhancing the myogenic potential of the satellite cells.

Methods

HDACis were added to FAPs and satellite cell cultures isolated from mice. The HDACi vorinostat was additionally administered into a RC injury animal model. Histological analysis was carried out on the isolated supra- and infraspinatus muscles to assess vorinostat anti-muscle degeneration potential.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 763 - 776
1 Nov 2022
Zhang Y Jiang B Zhang P Chiu SK Lee MH

Aims

Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the zinc-dependent matrix metalloproteinases (MMP) and A disintegrin and metalloproteinases (ADAM) involved in extracellular matrix modulation. The present study aims to develop the TIMPs as biologics for osteoclast-related disorders.

Methods

We examine the inhibitory effect of a high affinity, glycosyl-phosphatidylinositol-anchored TIMP variant named ‘T1PrαTACE’ on receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced osteoclast differentiation.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment.

Cite this article: Bone Joint Res 2024;13(12):725–740.