Advertisement for orthosearch.org.uk
Results 1 - 35 of 35
Results per page:
Bone & Joint Research
Vol. 13, Issue 5 | Pages 201 - 213
1 May 2024
Hamoodi Z Gehringer CK Bull LM Hughes T Kearsley-Fleet L Sergeant JC Watts AC

Aims

The aims of this study were to identify and evaluate the current literature examining the prognostic factors which are associated with failure of total elbow arthroplasty (TEA).

Methods

Electronic literature searches were conducted using MEDLINE, Embase, PubMed, and Cochrane. All studies reporting prognostic estimates for factors associated with the revision of a primary TEA were included. The risk of bias was assessed using the Quality In Prognosis Studies (QUIPS) tool, and the quality of evidence was assessed using the modified Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework. Due to low quality of the evidence and the heterogeneous nature of the studies, a narrative synthesis was used.


Bone & Joint Research
Vol. 3, Issue 2 | Pages 38 - 47
1 Feb 2014
Hogendoorn S Duijnisveld BJ van Duinen SG Stoel BC van Dijk JG Fibbe WE Nelissen RGHH

Objectives. Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps. Methods. Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy. Results. No adverse effects in vital signs, bone marrow aspiration sites, injection sites, or surgical wound were seen. After cell therapy there was a 52% decrease in muscle fibrosis (p = 0.01), an 80% increase in myofibre diameter (p = 0.007), a 50% increase in satellite cells (p = 0.045) and an 83% increase in capillary-to-myofibre ratio (p < 0.001) was shown. CT analysis demonstrated a 48% decrease in mean muscle density (p = 0.009). Motor unit analysis showed a mean increase of 36% in motor unit amplitude (p = 0.045), 22% increase in duration (p = 0.005) and 29% increase in number of phases (p = 0.002). Conclusions. Mononuclear cell injection in partly denervated muscle of brachial plexus patients is safe. The results suggest enhanced muscle reinnervation and regeneration. Cite this article: Bone Joint Res 2014;3:38–47


Bone & Joint Research
Vol. 13, Issue 8 | Pages 392 - 400
5 Aug 2024
Barakat A Evans J Gibbons C Singh HP

Aims

The Oxford Shoulder Score (OSS) is a 12-item measure commonly used for the assessment of shoulder surgeries. This study explores whether computerized adaptive testing (CAT) provides a shortened, individually tailored questionnaire while maintaining test accuracy.

Methods

A total of 16,238 preoperative OSS were available in the National Joint Registry (NJR) for England, Wales, Northern Ireland, the Isle of Man, and the States of Guernsey dataset (April 2012 to April 2022). Prior to CAT, the foundational item response theory (IRT) assumptions of unidimensionality, monotonicity, and local independence were established. CAT compared sequential item selection with stopping criteria set at standard error (SE) < 0.32 and SE < 0.45 (equivalent to reliability coefficients of 0.90 and 0.80) to full-length patient-reported outcome measure (PROM) precision.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction.

Cite this article: Bone Joint Res 2023;12(7):447–454.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims

The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA.

Methods

Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 814 - 825
14 Nov 2022
Ponkilainen V Kuitunen I Liukkonen R Vaajala M Reito A Uimonen M

Aims

The aim of this systematic review and meta-analysis was to gather epidemiological information on selected musculoskeletal injuries and to provide pooled injury-specific incidence rates.

Methods

PubMed (National Library of Medicine) and Scopus (Elsevier) databases were searched. Articles were eligible for inclusion if they reported incidence rate (or count with population at risk), contained data on adult population, and were written in English language. The number of cases and population at risk were collected, and the pooled incidence rates (per 100,000 person-years) with 95% confidence intervals (CIs) were calculated by using either a fixed or random effects model.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 342 - 352
9 Jul 2024
Cheng J Jhan S Chen P Hsu S Wang C Moya D Wu Y Huang C Chou W Wu K

Aims

To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration.

Methods

The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 835 - 842
17 Nov 2022
Wiesli MG Livio F Achermann Y Gautier E Wahl P

Aims

There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO4) in vitro, and is particularly effective against streptococci and a large portion of Gram-negative bacteria. We present the clinical release kinetics of ceftriaxone-loaded CaSO4 applied locally to treat ODAI.

Methods

A total of 30 operations with ceftriaxone-loaded CaSO4 had been performed in 28 patients. Ceftriaxone was applied as a single local antibiotic in 21 operations and combined with vancomycin in eight operations, and in an additional operation with vancomycin and amphotericin B. Sampling of wound fluid was performed from drains or aspirations. Ceftriaxone concentrations were measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS).


Bone & Joint Research
Vol. 6, Issue 10 | Pages 590 - 599
1 Oct 2017
Jefferson L Brealey S Handoll H Keding A Kottam L Sbizzera I Rangan A

Objectives. To explore whether orthopaedic surgeons have adopted the Proximal Fracture of the Humerus: Evaluation by Randomisation (PROFHER) trial results routinely into clinical practice. Methods. A questionnaire was piloted with six orthopaedic surgeons using a ‘think aloud’ process. The final questionnaire contained 29 items and was distributed online to surgeon members of the British Orthopaedic Association and British Elbow and Shoulder Society. Descriptive statistics summarised the sample characteristics and fracture treatment of respondents overall, and grouped them by whether they changed practice based on PROFHER trial findings. Free-text responses were analysed qualitatively for emerging themes using Framework Analysis principles. Results. There were complete responses from 265 orthopaedic and trauma surgeons who treat patients with proximal humeral fractures. Around half (137) had changed practice to various extents because of PROFHER, by operating on fewer PROFHER-eligible fractures. A third (43) of the 128 respondents who had not changed practice were already managing patients non-operatively. Those who changed practice were more likely to be younger, work in a trauma unit rather than a major trauma centre, be specialist shoulder surgeons and treat fewer PROFHER-eligible fractures surgically. This group gave higher scores when assessing validity and applicability of PROFHER. In contrast, a quarter of the non-changers were critical, sometimes emphatically, of PROFHER. The strongest theme that emerged overall was the endorsement of evidence-based practice. Conclusion. PROFHER has had an impact on surgeons’ clinical practice, both through changing it, and through underpinning existing non-operative practice. Although some respondents expressed reservations about the trial, evidence from such trials was found to be the most important influence on surgeons’ decisions to change practice. Cite this article: L. Jefferson, S. Brealey, H. Handoll, A. Keding, L. Kottam, I. Sbizzera, A. Rangan. Impact of the PROFHER trial findings on surgeons’ clinical practice: An online questionnaire survey. Bone Joint Res 2017;6:590–599. DOI: 10.1302/2046-3758.610.BJR-2017-0170


Bone & Joint Research
Vol. 10, Issue 10 | Pages 650 - 658
1 Oct 2021
Sanghani-Kerai A Black C Cheng SO Collins L Schneider N Blunn G Watson F Fitzpatrick N

Aims

This study investigates the effects of intra-articular injection of adipose-derived mesenchymal stem cells (AdMSCs) and platelet-rich plasma (PRP) on lameness, pain, and quality of life in osteoarthritic canine patients.

Methods

With informed owner consent, adipose tissue collected from adult dogs diagnosed with degenerative joint disease was enzymatically digested and cultured to passage 1. A small portion of cells (n = 4) surplus to clinical need were characterized using flow cytometry and tri-lineage differentiation. The impact and degree of osteoarthritis (OA) was assessed using the Liverpool Osteoarthritis in Dogs (LOAD) score, Modified Canine Osteoarthritis Staging Tool (mCOAST), kinetic gait analysis, and diagnostic imaging. Overall, 28 joints (25 dogs) were injected with autologous AdMSCs and PRP. The patients were followed up at two, four, eight, 12, and 24 weeks. Data were analyzed using two related-samples Wilcoxon signed-rank or Mann-Whitney U tests with statistical significance set at p < 0.05.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 807 - 819
1 Dec 2021
Wong RMY Wong PY Liu C Chung YL Wong KC Tso CY Chow SK Cheung W Yung PS Chui CS Law SW

Aims

The use of 3D printing has become increasingly popular and has been widely used in orthopaedic surgery. There has been a trend towards an increasing number of publications in this field, but existing literature incorporates limited high-quality studies, and there is a lack of reports on outcomes. The aim of this study was to perform a scoping review with Level I evidence on the application and effectiveness of 3D printing.

Methods

A literature search was performed in PubMed, Embase, and Web of Science databases. The keywords used for the search criteria were ((3d print*) OR (rapid prototyp*) OR (additive manufactur*)) AND (orthopaedic). The inclusion criteria were: 1) use of 3D printing in orthopaedics, 2) randomized controlled trials, and 3) studies with participants/patients. Risk of bias was assessed with Cochrane Collaboration Tool and PEDro Score. Pooled analysis was performed.


Bone & Joint Research
Vol. 2, Issue 3 | Pages 51 - 57
1 Mar 2013
Sullivan MP Torres SJ Mehta S Ahn J

Neurogenic heterotopic ossification (NHO) is a disorder of aberrant bone formation affecting one in five patients sustaining a spinal cord injury or traumatic brain injury. Ectopic bone forms around joints in characteristic patterns, causing pain and limiting movement especially around the hip and elbow. Clinical sequelae of neurogenic heterotopic ossification include urinary tract infection, pressure injuries, pneumonia and poor hygiene, making early diagnosis and treatment clinically compelling. However, diagnosis remains difficult with more investigation needed. Our pathophysiological understanding stems from mechanisms of basic bone formation enhanced by evidence of systemic influences from circulating humor factors and perhaps neurological ones. This increasing understanding guides our implementation of current prophylaxis and treatment including the use of non-steroidal anti-inflammatory drugs, bisphosphonates, radiation therapy and surgery and, importantly, should direct future, more effective ones


Bone & Joint Research
Vol. 10, Issue 2 | Pages 113 - 121
1 Feb 2021
Nicholson JA Oliver WM MacGillivray TJ Robinson CM Simpson AHRW

Aims

To evaluate if union of clavicle fractures can be predicted at six weeks post-injury by the presence of bridging callus on ultrasound.

Methods

Adult patients managed nonoperatively with a displaced mid-shaft clavicle were recruited prospectively. Ultrasound evaluation of the fracture was undertaken to determine if sonographic bridging callus was present. Clinical risk factors at six weeks were used to stratify patients at high risk of nonunion with a combination of Quick Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH) ≥ 40, fracture movement on examination, or absence of callus on radiograph.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 85 - 95
27 Jan 2021
Akhbari P Jaggard MK Boulangé CL Vaghela U Graça G Bhattacharya R Lindon JC Williams HRT Gupte CM

Aims

The diagnosis of joint infections is an inexact science using combinations of blood inflammatory markers and microscopy, culture, and sensitivity of synovial fluid (SF). There is potential for small molecule metabolites in infected SF to act as infection markers that could improve accuracy and speed of detection. The objective of this study was to use nuclear magnetic resonance (NMR) spectroscopy to identify small molecule differences between infected and noninfected human SF.

Methods

In all, 16 SF samples (eight infected native and prosthetic joints plus eight noninfected joints requiring arthroplasty for end-stage osteoarthritis) were collected from patients. NMR spectroscopy was used to analyze the metabolites present in each sample. Principal component analysis and univariate statistical analysis were undertaken to investigate metabolic differences between the two groups.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 302 - 310
1 Jun 2020
Tibbo ME Limberg AK Salib CG Turner TW McLaury AR Jay AG Bettencourt JW Carter JM Bolon B Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen AJ Abdel MP

Aims

Arthrofibrosis is a relatively common complication after joint injuries and surgery, particularly in the knee. The present study used a previously described and validated rabbit model to assess the biomechanical, histopathological, and molecular effects of the mast cell stabilizer ketotifen on surgically induced knee joint contractures in female rabbits.

Methods

A group of 12 skeletally mature rabbits were randomly divided into two groups. One group received subcutaneous (SQ) saline, and a second group received SQ ketotifen injections. Biomechanical data were collected at eight, ten, 16, and 24 weeks. At the time of necropsy, posterior capsule tissue was collected for histopathological and gene expression analyses (messenger RNA (mRNA) and protein).


Bone & Joint Research
Vol. 8, Issue 10 | Pages 443 - 450
1 Oct 2019
Treacy RBC Holland JP Daniel J Ziaee H McMinn DJW

Objectives

Modern metal-on-metal (MoM) hip resurfacing arthroplasty (HRA), while achieving good results with well-orientated, well-designed components in ideal patients, is contraindicated in women, men with head size under 50 mm, or metal hypersensitivity. These patients currently have no access to the benefits of HRA. Highly crosslinked polyethylene (XLPE) has demonstrated clinical success in total hip arthroplasty (THA) and, when used in HRA, potentially reduces metal ion-related sequelae. We report the early performance of HRA using a direct-to-bone cementless mono-bloc XLPE component coupled with a cobalt-chrome femoral head, in the patient group for whom HRA is currently contraindicated.

Methods

This is a cross-sectional, observational assessment of 88 consecutive metal-on-XLPE HRAs performed in 84 patients between 2015 and 2018 in three centres (three surgeons, including the designer surgeon). Mean follow-up is 1.6 years (0.7 to 3.9). Mean age at operation was 56 years (sd 11; 21 to 82), and 73% of implantations were in female patients. All patients were individually counselled, and a detailed informed consent was obtained prior to operation. Primary resurfacing was carried out in 85 hips, and three cases involved revision of previous MoM HRA. Clinical, radiological, and Oxford Hip Score (OHS) assessments were studied, along with implant survival.


Objectives

Adult mice lacking the transcription factor NFAT1 exhibit osteoarthritis (OA). The precise molecular mechanism for NFAT1 deficiency-induced osteoarthritic cartilage degradation remains to be clarified. This study aimed to investigate if NFAT1 protects articular cartilage (AC) against OA by directly regulating the transcription of specific catabolic and anabolic genes in articular chondrocytes.

Methods

Through a combined approach of gene expression analysis and web-based searching of NFAT1 binding sequences, 25 candidate target genes that displayed aberrant expression in Nfat1-/- AC at the initiation stage of OA, and possessed at least four NFAT1 binding sites in the promoter of each gene, were selected and tested for NFAT1 transcriptional activities by chromatin immunoprecipitation (ChIP) and promoter luciferase reporter assays using chondrocytes isolated from the AC of three- to four-month-old wild-type mice or Nfat1-/- mice with early OA phenotype.


Bone & Joint Research
Vol. 7, Issue 3 | Pages 213 - 222
1 Mar 2018
Tang X Teng S Petri M Krettek C Liu C Jagodzinski M

Objectives

The aims of this study were to determine whether the administration of anti-inflammatory and antifibrotic agents affect the proliferation, viability, and expression of markers involved in the fibrotic development of the fibroblasts obtained from arthrofibrotic tissue in vitro, and to evaluate the effect of the agents on arthrofibrosis prevention in vivo.

Methods

Dexamethasone, diclofenac, and decorin, in different concentrations, were employed to treat fibroblasts from arthrofibrotic tissue (AFib). Cell proliferation was measured by DNA quantitation, and viability was analyzed by Live/Dead staining. The levels of procollagen type I N-terminal propeptide (PINP) and procollagen type III N-terminal propeptide (PIIINP) were evaluated with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the expressions of fibrotic markers were detected by real-time polymerase chain reaction (PCR). Fibroblasts isolated from healthy tissue (Fib) served as control. Further, a rabbit model of joint contracture was used to evaluate the antifibrotic effect of the three different agents.


Bone & Joint Research
Vol. 6, Issue 9 | Pages 566 - 571
1 Sep 2017
Cheng T Zhang X Hu J Li B Wang Q

Objectives

Surgeons face a substantial risk of infection because of the occupational exposure to blood-borne pathogens (BBPs) from patients undergoing high-risk orthopaedic procedures. This study aimed to determine the seroprevalence of four BBPs among patients undergoing joint arthroplasty in Shanghai, China. In addition, we evaluated the significance of pre-operative screening by calculating a cost-to-benefit ratio.

Methods

A retrospective observational study of pre-operative screening for BBPs, including hepatitis B and C viruses (HBV and HCV), human immunodeficiency virus (HIV) and Treponema pallidum (TP), was conducted for sequential patients in the orthopaedic department of a large urban teaching hospital between 01 January 2009 and 30 May 2016. Medical records were analysed to verify the seroprevalence of these BBPs among the patients stratified by age, gender, local origin, type of surgery, history of previous transfusion and marital status.


Bone & Joint Research
Vol. 5, Issue 7 | Pages 301 - 306
1 Jul 2016
Madhuri V Santhanam M Rajagopal K Sugumar LK Balaji V

Objectives

To determine the pattern of mutations of the WISP3 gene in clinically identified progressive pseudorheumatoid dysplasia (PPD) in an Indian population.

Patients and Methods

A total of 15 patients with clinical features of PPD were enrolled in this study. Genomic DNA was isolated and polymerase chain reaction performed to amplify the WISP3 gene. Screening for mutations was done by conformation-sensitive gel electrophoresis, beginning with the fifth exon and subsequently proceeding to the remaining exons. Sanger sequencing was performed for both forward and reverse strands to confirm the mutations.


Bone & Joint Research
Vol. 4, Issue 11 | Pages 176 - 180
1 Nov 2015
Mirghasemi SA Rashidinia S Sadeghi MS Talebizadeh M Rahimi N

Objectives

There are various pin-in-plaster methods for treating fractures of the distal radius. The purpose of this study is to introduce a modified technique of ‘pin in plaster’.

Methods

Fifty-four patients with fractures of the distal radius were followed for one year post-operatively. Patients were excluded if they had type B fractures according to AO classification, multiple injuries or pathological fractures, and were treated more than seven days after injury. Range of movement and functional results were evaluated at three and six months and one and two years post-operatively. Radiographic parameters including radial inclination, tilt, and height, were measured pre- and post-operatively.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 137 - 144
1 Apr 2016
Paterson SI Eltawil NM Simpson AHRW Amin AK Hall AC

Objectives

During open orthopaedic surgery, joints may be exposed to air, potentially leading to cartilage drying and chondrocyte death, however, the long-term effects of joint drying in vivo are poorly understood. We used an animal model to investigate the subsequent effects of joint drying on cartilage and chondrocytes.

Methods

The patellar groove of anaesthetised rats was exposed (sham-operated), or exposed and then subjected to laminar airflow (0.25m/s; 60 minutes) before wounds were sutured and animals recovered. Animals were monitored for up to eight weeks and then sacrificed. Cartilage and chondrocyte properties were studied by histology and confocal microscopy, respectively.


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims

Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone.

Methods

A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.


Bone & Joint Research
Vol. 3, Issue 4 | Pages 89 - 94
1 Apr 2014
Cook JL Hung CT Kuroki K Stoker AM Cook CR Pfeiffer FM Sherman SL Stannard JP

Cartilage repair in terms of replacement, or regeneration of damaged or diseased articular cartilage with functional tissue, is the ‘holy grail’ of joint surgery. A wide spectrum of strategies for cartilage repair currently exists and several of these techniques have been reported to be associated with successful clinical outcomes for appropriately selected indications. However, based on respective advantages, disadvantages, and limitations, no single strategy, or even combination of strategies, provides surgeons with viable options for attaining successful long-term outcomes in the majority of patients. As such, development of novel techniques and optimisation of current techniques need to be, and are, the focus of a great deal of research from the basic science level to clinical trials. Translational research that bridges scientific discoveries to clinical application involves the use of animal models in order to assess safety and efficacy for regulatory approval for human use. This review article provides an overview of animal models for cartilage repair.

Cite this article: Bone Joint Res 2014;4:89–94.


Objectives

Local corticosteroid infiltration is a common practice of treatment for lateral epicondylitis. In recent studies no statistically significant or clinically relevant results in favour of corticosteroid injections were found. The injection of autologous blood has been reported to be effective for both intermediate and long-term outcomes. It is hypothesised that blood contains growth factors, which induce the healing cascade.

Methods

A total of 60 patients were included in this prospective randomised study: 30 patients received 2 ml autologous blood drawn from contralateral upper limb vein + 1 ml 0.5% bupivacaine, and 30 patients received 2 ml local corticosteroid + 1 ml 0.5% bupivacaine at the lateral epicondyle. Outcome was measured using a pain score and Nirschl staging of lateral epicondylitis. Follow-up was continued for total of six months, with assessment at one week, four weeks, 12 weeks and six months.


Bone & Joint Research
Vol. 4, Issue 7 | Pages 105 - 116
1 Jul 2015
Shea CA Rolfe RA Murphy P

Construction of a functional skeleton is accomplished through co-ordination of the developmental processes of chondrogenesis, osteogenesis, and synovial joint formation. Infants whose movement in utero is reduced or restricted and who subsequently suffer from joint dysplasia (including joint contractures) and thin hypo-mineralised bones, demonstrate that embryonic movement is crucial for appropriate skeletogenesis. This has been confirmed in mouse, chick, and zebrafish animal models, where reduced or eliminated movement consistently yields similar malformations and which provide the possibility of experimentation to uncover the precise disturbances and the mechanisms by which movement impacts molecular regulation. Molecular genetic studies have shown the important roles played by cell communication signalling pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone morphogenetic protein. These pathways regulate cell behaviours such as proliferation and differentiation to control maturation of the skeletal elements, and are affected when movement is altered. Cell contacts to the extra-cellular matrix as well as the cytoskeleton offer a means of mechanotransduction which could integrate mechanical cues with genetic regulation. Indeed, expression of cytoskeletal genes has been shown to be affected by immobilisation. In addition to furthering our understanding of a fundamental aspect of cell control and differentiation during development, research in this area is applicable to the engineering of stable skeletal tissues from stem cells, which relies on an understanding of developmental mechanisms including genetic and physical criteria. A deeper understanding of how movement affects skeletogenesis therefore has broader implications for regenerative therapeutics for injury or disease, as well as for optimisation of physical therapy regimes for individuals affected by skeletal abnormalities.

Cite this article: Bone Joint Res 2015;4:105–116


Bone & Joint Research
Vol. 4, Issue 1 | Pages 1 - 5
1 Jan 2015
Vázquez-Portalatín N Breur GJ Panitch A Goergen CJ

Objective

Dunkin Hartley guinea pigs, a commonly used animal model of osteoarthritis, were used to determine if high frequency ultrasound can ensure intra-articular injections are accurately positioned in the knee joint.

Methods

A high-resolution small animal ultrasound system with a 40 MHz transducer was used for image-guided injections. A total of 36 guinea pigs were anaesthetised with isoflurane and placed on a heated stage. Sterile needles were inserted directly into the knee joint medially, while the transducer was placed on the lateral surface, allowing the femur, tibia and fat pad to be visualised in the images. B-mode cine loops were acquired during 100 µl. We assessed our ability to visualise 1) important anatomical landmarks, 2) the needle and 3) anatomical changes due to the injection.


Bone & Joint Research
Vol. 3, Issue 12 | Pages 335 - 340
1 Dec 2014
Handoll HHG Goodchild L Brealey SD Hanchard NCA Jefferson L Keding A Rangan A

Objectives

A rigorous approach to developing, delivering and documenting rehabilitation within randomised controlled trials of surgical interventions is required to underpin the generation of reliable and usable evidence. This article describes the key processes used to ensure provision of good quality and comparable rehabilitation to all participants of a multi-centre randomised controlled trial comparing surgery with conservative treatment of proximal humeral fractures in adults.

Methods

These processes included the development of a patient information leaflet on self-care during sling immobilisation, the development of a basic treatment physiotherapy protocol that received input and endorsement by specialist physiotherapists providing patient care, and establishing an expectation for the provision of home exercises. Specially designed forms were also developed to facilitate reliable reporting of the physiotherapy care that patients received.


Bone & Joint Research
Vol. 3, Issue 3 | Pages 82 - 88
1 Mar 2014
Abdel MP Morrey ME Barlow JD Grill DE Kolbert CP An KN Steinmann SP Morrey BF Sanchez-Sotelo J

Objectives

The goal of this study was to determine whether intra-articular administration of the potentially anti-fibrotic agent decorin influences the expression of genes involved in the fibrotic cascade, and ultimately leads to less contracture, in an animal model.

Methods

A total of 18 rabbits underwent an operation on their right knees to form contractures. Six limbs in group 1 received four intra-articular injections of decorin; six limbs in group 2 received four intra-articular injections of bovine serum albumin (BSA) over eight days; six limbs in group 3 received no injections. The contracted limbs of rabbits in group 1 were biomechanically and genetically compared with the contracted limbs of rabbits in groups 2 and 3, with the use of a calibrated joint measuring device and custom microarray, respectively.


Bone & Joint Research
Vol. 3, Issue 6 | Pages 193 - 202
1 Jun 2014
Hast MW Zuskov A Soslowsky LJ

Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing.

Cite this article: Bone Joint Res 2014;3:193–202.


Bone & Joint Research
Vol. 2, Issue 10 | Pages 214 - 219
1 Oct 2013
Chezar A Berkovitch Y Haddad M Keren Y Soudry M Rosenberg N

Objectives

The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb.

Methods

A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared.


Bone & Joint Research
Vol. 2, Issue 6 | Pages 116 - 121
1 Jun 2013
Duijnisveld BJ Saraç Ç Malessy MJA Brachial Plexus Advisory Board TI Vliet Vlieland TPM Nelissen RGHH

Background

Symptoms of obstetric brachial plexus injury (OBPI) vary widely over the course of time and from individual to individual and can include various degrees of denervation, muscle weakness, contractures, bone deformities and functional limitations. To date, no universally accepted overall framework is available to assess the outcome of patients with OBPI. The objective of this paper is to outline the proposed process for the development of International Classification of Functioning, Disability and Health (ICF) Core Sets for patients with an OBPI.

Methods

The first step is to conduct four preparatory studies to identify ICF categories important for OBPI: a) a systematic literature review to identify outcome measures, b) a qualitative study using focus groups, c) an expert survey and d) a cross-sectional, multicentre study. A first version of ICF Core Sets will be defined at a consensus conference, which will integrate the evidence from the preparatory studies. In a second step, field-testing among patients will validate this first version of Core Sets for OBPI.


Bone & Joint Research
Vol. 1, Issue 8 | Pages 174 - 179
1 Aug 2012
Alfieri KA Forsberg JA Potter BK

Heterotopic ossification (HO) is perhaps the single most significant obstacle to independence, functional mobility, and return to duty for combat-injured veterans of Operation Enduring Freedom and Operation Iraqi Freedom. Recent research into the cause(s) of HO has been driven by a markedly higher prevalence seen in these wounded warriors than encountered in previous wars or following civilian trauma. To that end, research in both civilian and military laboratories continues to shed light onto the complex mechanisms behind HO formation, including systemic and wound specific factors, cell lineage, and neurogenic inflammation. Of particular interest, non-invasive in vivo testing using Raman spectroscopy may become a feasible modality for early detection, and a wound-specific model designed to detect the early gene transcript signatures associated with HO is being tested. Through a combined effort, the goals of early detection, risk stratification, and development of novel systemic and local prophylaxis may soon be attainable.


Bone & Joint Research
Vol. 1, Issue 5 | Pages 78 - 85
1 May 2012
Entezari V Della Croce U DeAngelis JP Ramappa AJ Nazarian A Trechsel BL Dow WA Stanton SK Rosso C Müller A McKenzie B Vartanians V Cereatti A

Objectives

Cadaveric models of the shoulder evaluate discrete motion segments using the glenohumeral joint in isolation over a defined trajectory. The aim of this study was to design, manufacture and validate a robotic system to accurately create three-dimensional movement of the upper body and capture it using high-speed motion cameras.

Methods

In particular, we intended to use the robotic system to simulate the normal throwing motion in an intact cadaver. The robotic system consists of a lower frame (to move the torso) and an upper frame (to move an arm) using seven actuators. The actuators accurately reproduced planned trajectories. The marker setup used for motion capture was able to determine the six degrees of freedom of all involved joints during the planned motion of the end effector.