Aims. Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Methods. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S. 4. ). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full
Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic human cadaver thoracic and lumbar vertebrae were instrumented with pedicle screws (uncemented, solid cemented or fenestrated cemented) and augmented with high-viscosity PMMA cement (0 mL, 1 mL or 3 mL). The insertion torque and bone mineral density were determined. Radiographs and CT scans were undertaken to evaluate cement distribution and cement leakage. Pull-out testing was performed with a material testing machine to measure failure load and stiffness. The paired t-test was used to compare the two screws within each
To determine the major risk factors for unplanned reoperations (UROs) following corrective surgery for adult spinal deformity (ASD) and their interactions, using machine learning-based prediction algorithms and game theory. Patients who underwent surgery for ASD, with a minimum of two-year follow-up, were retrospectively reviewed. In total, 210 patients were included and randomly allocated into training (70% of the sample size) and test (the remaining 30%) sets to develop the machine learning algorithm. Risk factors were included in the analysis, along with clinical characteristics and parameters acquired through diagnostic radiology.Aims
Methods
The development of lumbar lordosis has been traditionally examined using angular measurements of the spine to reflect its shape. While studies agree regarding the increase in the angles during growth, the growth rate is understudied, and sexual dimorphism is debated. In this study, we used a novel method to estimate the shape of the lumbar curve (LC) using the landmark-based geometric morphometric method to explore changes in LC during growth, examine the effect of size and sex on LC shape, and examine the associations between angular measurements and shape. The study population included 258 children aged between 0 and 20 years (divided into five age groups) who underwent a CT scan between the years 2009 and 2019. The landmark-based geometric morphometric method was used to capture the LC shape in a sagittal view. Additionally, the lordosis was measured via Cobb and sacral slope angles. Multivariate and univariate statistical analyses were carried out to examine differences in shape between males and females and between the age groups.Aims
Methods
Insufficient treatment response in rheumatoid arthritis (RA) patients requires novel treatment strategies to halt disease progression. The potential benefit of combination of cytokine-inhibitors in RA is still unclear and needs further investigation. To explore the impact of combined deficiency of two major cytokines, namely interleukin (IL)-1 and IL-6, in this study double deficient mice for IL-1αβ and IL-6 were investigated in different tumour necrosis factor (TNF)-driven inflammatory bone disorders, namely peripheral arthritis and sacroiliitis, as well as systemic bone loss. Disease course, histopathological features of arthritis, and micro-CT (µCT) bone analysis of local and systemic bone loss were assessed in 15-week-old Aims
Methods
The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed.Aims
Methods
Microindentation has the potential to measure the stiffness of an individual patient’s bone. Bone stiffness plays a crucial role in the press-fit stability of orthopaedic implants. Arming surgeons with accurate bone stiffness information may reduce surgical complications including periprosthetic fractures. The question addressed with this systematic review is whether microindentation can accurately measure cortical bone stiffness. A systematic review of all English language articles using a keyword search was undertaken using Medline, Embase, PubMed, Scopus and Cochrane databases. Studies that only used nanoindentation, cancellous bone or animal tissue were excluded.Objectives
Methods
The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded.Objectives
Methods
Although vertebroplasty is very effective for relieving acute pain from an osteoporotic vertebral compression fracture, not all patients who undergo vertebroplasty receive the same degree of benefit from the procedure. In order to identify the ideal candidate for vertebroplasty, pre-operative prognostic demographic or clinico-radiological factors need to be identified. The objective of this study was to identify the pre-operative prognostic factors related to the effect of vertebroplasty on acute pain control using a cohort of surgically and non-surgically managed patients. Patients with single-level acute osteoporotic vertebral compression fracture at thoracolumbar junction (T10 to L2) were followed. If the patients were not satisfied with acute pain reduction after a three-week conservative treatment, vertebroplasty was recommended. Pain assessment was carried out at the time of diagnosis, as well as three, four, six, and 12 weeks after the diagnosis. The effect of vertebroplasty, compared with conservative treatment, on back pain (visual analogue score, VAS) was analysed with the use of analysis-of-covariance models that adjusted for pre-operative VAS scores.Objectives
Patients and Methods
The aim of this study was to examine whether asymmetric loading
influences macrophage elastase (MMP12) expression in different parts
of a rat tail intervertebral disc and growth plate and if MMP12
expression is correlated with the severity of the deformity. A wedge deformity between the ninth and tenth tail vertebrae
was produced with an Ilizarov-type mini external fixator in 45 female
Wistar rats, matched for their age and weight. Three groups were
created according to the degree of deformity (10°, 30° and 50°).
A total of 30 discs and vertebrae were evaluated immunohistochemically
for immunolocalisation of MMP12 expression, and 15 discs were analysed
by western blot and zymography in order to detect pro- and active
MMP12.Objectives
Methods
There remains conflicting evidence regarding cortical bone strength
following bisphosphonate therapy. As part of a study to assess the
effects of bisphosphonate treatment on the healing of rat tibial
fractures, the mechanical properties and radiological density of
the uninjured contralateral tibia was assessed. Skeletally mature aged rats were used. A total of 14 rats received
1µg/kg ibandronate (iban) daily and 17 rats received 1 ml 0.9% sodium
chloride (control) daily. Stress at failure and toughness of the
tibial diaphysis were calculated following four-point bending tests.Objectives
Methods