Objectives. In order to ensure safety of the cell-based therapy for bone
regeneration, we examined in vivo biodistribution
of locally or systemically transplanted osteoblast-like cells generated
from bone marrow (BM) derived mononuclear cells. Methods. BM cells obtained from a total of 13 Sprague-Dawley (SD) green
fluorescent protein transgenic (GFP-Tg) rats were culture-expanded
in an osteogenic differentiation medium for three weeks. Osteoblast-like
cells were then locally transplanted with collagen scaffolds to
the rat model of segmental bone defect. Donor cells were also intravenously infused
to the normal Sprague-Dawley (SD) rats for systemic biodistribution.
The flow cytometric and histological analyses were performed for
cellular tracking after transplantation. Results. Locally transplanted donor cells remained within the vicinity
of the transplantation site without migrating to other organs. Systemically
administered large amounts of osteoblast-like cells were cleared
from various organ tissues within three days of transplantation
and did not show any adverse effects in the transplanted rats. Conclusions. We demonstrated a precise assessment of donor cell biodistribution
that further augments prospective utility of regenerative cell therapy. Cite this article: Bone Joint Res 2014;3:76–81