Advertisement for orthosearch.org.uk
Results 1 - 14 of 14
Results per page:
Bone & Joint Research
Vol. 12, Issue 7 | Pages 412 - 422
4 Jul 2023
Ferguson J Bourget-Murray J Hotchen AJ Stubbs D McNally M

Aims

Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up.

Methods

A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite ceramic containing gentamicin (Group CG). Outcome measures were infection recurrence, wound leakage, and subsequent fracture involving the treated segment. Bone-void filling was assessed radiologically at a minimum of six months post-surgery.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 155 - 164
1 Mar 2023
McCarty CP Nazif MA Sangiorgio SN Ebramzadeh E Park S

Aims

Taper corrosion has been widely reported to be problematic for modular total hip arthroplasty implants. A simple and systematic method to evaluate taper damage with sufficient resolution is needed. We introduce a semiquantitative grading system for modular femoral tapers to characterize taper corrosion damage.

Methods

After examining a unique collection of retrieved cobalt-chromium (CoCr) taper sleeves (n = 465) using the widely-used Goldberg system, we developed an expanded six-point visual grading system intended to characterize the severity, visible material loss, and absence of direct component contact due to corrosion. Female taper sleeve damage was evaluated by three blinded observers using the Goldberg scoring system and the expanded system. A subset (n = 85) was then re-evaluated following destructive cleaning, using both scoring systems. Material loss for this subset was quantified using metrology and correlated with both scoring systems.


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


Aims

To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs).

Methods

Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims

There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN).

Methods

The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites.


Bone & Joint Research
Vol. 7, Issue 8 | Pages 524 - 538
1 Aug 2018
Zhao S Arnold M Ma S Abel RL Cobb JP Hansen U Boughton O

Objectives. The ability to determine human bone stiffness is of clinical relevance in many fields, including bone quality assessment and orthopaedic prosthesis design. Stiffness can be measured using compression testing, an experimental technique commonly used to test bone specimens in vitro. This systematic review aims to determine how best to perform compression testing of human bone. Methods. A keyword search of all English language articles up until December 2017 of compression testing of bone was undertaken in Medline, Embase, PubMed, and Scopus databases. Studies using bulk tissue, animal tissue, whole bone, or testing techniques other than compression testing were excluded. Results. A total of 4712 abstracts were retrieved, with 177 papers included in the analysis; 20 studies directly analyzed the compression testing technique to improve the accuracy of testing. Several influencing factors should be considered when testing bone samples in compression. These include the method of data analysis, specimen storage, specimen preparation, testing configuration, and loading protocol. Conclusion. Compression testing is a widely used technique for measuring the stiffness of bone but there is a great deal of inter-study variation in experimental techniques across the literature. Based on best evidence from the literature, suggestions for bone compression testing are made in this review, although further studies are needed to establish standardized bone testing techniques in order to increase the comparability and reliability of bone stiffness studies. Cite this article: S. Zhao, M. Arnold, S. Ma, R. L. Abel, J. P. Cobb, U. Hansen, O. Boughton. Standardizing compression testing for measuring the stiffness of human bone. Bone Joint Res 2018;7:524–538. DOI: 10.1302/2046-3758.78.BJR-2018-0025.R1


Bone & Joint Research
Vol. 11, Issue 6 | Pages 349 - 361
9 Jun 2022
Jun Z Yuping W Yanran H Ziming L Yuwan L Xizhong Z Zhilin W Xiaoji L

Aims

The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects.

Methods

HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 601 - 612
1 Sep 2020
Rajagopal K Ramesh S Walter NM Arora A Katti DS Madhuri V

Aims

Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold.

Methods

Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining.


Bone & Joint Research
Vol. 9, Issue 1 | Pages 23 - 28
1 Jan 2020
Kurosawa T Mifune Y Inui A Nishimoto H Ueda Y Kataoka T Yamaura K Mukohara S Kuroda R

Aims

The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes.

Methods

Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+); high glucose with apocynin (HG apo+); and high glucose without apocynin (HG apo–). Reactive oxygen species production, cell proliferation, apoptosis and messenger RNA (mRNA) expression of NOX1 and 4, and interleukin-6 (IL-6) were determined in vitro.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 518 - 525
1 Nov 2019
Whitaker S Edwards JH Guy S Ingham E Herbert A

Objectives

This study investigated the biomechanical performance of decellularized porcine superflexor tendon (pSFT) grafts of varying diameters when utilized in conjunction with contemporary ACL graft fixation systems. This aimed to produce a range of ‘off-the-shelf’ products with predictable mechanical performance, depending on the individual requirements of the patient.

Methods

Decellularized pSFTs were prepared to create double-bundle grafts of 7 mm, 8 mm, and 9 mm diameter. Femoral and tibial fixation systems were simulated utilizing Arthrex suspension devices and interference screws in bovine bone, respectively. Dynamic stiffness and creep were measured, followed by ramp to failure from which linear stiffness and load at failure were measured. The mechanisms of failure were also recorded.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 333 - 341
1 Jul 2019
Grossner TL Haberkorn U Gotterbarm T

Objectives

Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote in vivo bone formation. One of the main problems of scaffold-based osteogenic cell cultures is the difficulty in quantifying the amount of newly produced extracellular mineral deposition, as a marker for new bone formation, without destroying the scaffold. In recent studies, we were able to show that 99mTc-methylene diphosphonate (99mTc-MDP), a gamma radiation-emitting radionuclide, can successfully be applied as a reliable quantitative marker for mineral deposition as this tracer binds with high affinity to newly produced hydroxyapatite (HA).

Methods

Within the present study, we evaluated whether this promising new method, using 99mTc-hydroxydiphosphonate (99mTc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with 99mTc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured.


Bone & Joint Research
Vol. 7, Issue 6 | Pages 430 - 439
1 Jun 2018
Eggermont F Derikx LC Verdonschot N van der Geest ICM de Jong MAA Snyers A van der Linden YM Tanck E

Objectives

In this prospective cohort study, we investigated whether patient-specific finite element (FE) models can identify patients at risk of a pathological femoral fracture resulting from metastatic bone disease, and compared these FE predictions with clinical assessments by experienced clinicians.

Methods

A total of 39 patients with non-fractured femoral metastatic lesions who were irradiated for pain were included from three radiotherapy institutes. During follow-up, nine pathological fractures occurred in seven patients. Quantitative CT-based FE models were generated for all patients. Femoral failure load was calculated and compared between the fractured and non-fractured femurs. Due to inter-scanner differences, patients were analyzed separately for the three institutes. In addition, the FE-based predictions were compared with fracture risk assessments by experienced clinicians.


Bone & Joint Research
Vol. 7, Issue 10 | Pages 570 - 579
1 Oct 2018
Kallala R Harris WE Ibrahim M Dipane M McPherson E

Aims

Calcium sulphate has traditionally been used as a filler of dead space arising during surgery. Various complications have been described following the use of Stimulan bio-absorbable calcium sulphate beads. This study is a prospective observational study to assess the safety profile of these beads when used in revision arthroplasty, comparing the complication rates with those reported in the literature.

Methods

A total of 755 patients who underwent 456 revision total knee arthroplasties (TKA) and 299 revision total hip arthroplasties (THA), with a mean follow-up of 35 months (0 to 78) were included in the study.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 318 - 324
1 Apr 2018
González-Quevedo D Martínez-Medina I Campos A Campos F Carriel V

Objectives

Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries.

Methods

We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.