Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Bone & Joint Research
Vol. 13, Issue 8 | Pages 392 - 400
5 Aug 2024
Barakat A Evans J Gibbons C Singh HP

Aims

The Oxford Shoulder Score (OSS) is a 12-item measure commonly used for the assessment of shoulder surgeries. This study explores whether computerized adaptive testing (CAT) provides a shortened, individually tailored questionnaire while maintaining test accuracy.

Methods

A total of 16,238 preoperative OSS were available in the National Joint Registry (NJR) for England, Wales, Northern Ireland, the Isle of Man, and the States of Guernsey dataset (April 2012 to April 2022). Prior to CAT, the foundational item response theory (IRT) assumptions of unidimensionality, monotonicity, and local independence were established. CAT compared sequential item selection with stopping criteria set at standard error (SE) < 0.32 and SE < 0.45 (equivalent to reliability coefficients of 0.90 and 0.80) to full-length patient-reported outcome measure (PROM) precision.


Objectives. This investigation sought to advance the work published in our prior biomechanical study (Journal of Orthopaedic Research, 2016). We specifically sought to determine whether there are additional easy-to-measure parameters on plain radiographs of the proximal humerus that correlate more strongly with ultimate fracture load, and whether a parameter resembling the Dorr strength/quality characterisation of proximal femurs can be applied to humeri. Materials and Methods. A total of 33 adult humeri were used from a previous study where we quantified bone mineral density of the proximal humerus using radiographs and dual-energy x-ray absorptiometry (DEXA), and regional mean cortical thickness and cortical index using radiographs. The bones were fractured in a simulated backwards fall with the humeral head loaded at 2 mm/second via a frustum angled at 30° from the long axis of the bone. Correlations were assessed with ultimate fracture load and these new parameters: cortical index expressed in areas (“areal cortical index”) of larger regions of the diaphysis; the canal-to-calcar ratio used analogous to its application in proximal femurs; and the recently described medial cortical ratio. Results. The three new parameters showed the following correlations with ultimate fracture load: areal cortical index (r = 0.56, p < 0.001); canal-to-calcar ratio (r = 0.38, p = 0.03); and medial cortical ratio (r = 0.49, p < 0.005). These correlations were weaker when compared with those that we previously reported: mean cortical thickness of the proximal diaphysis versus ultimate fracture load (r = 0.71; p < 0.001); and mean density in the central humeral head versus ultimate fracture load (r = 0.70; p < 0.001). Conclusion. Simple-to-measure radiographic parameters of the proximal humerus reported previously are more useful in predicting ultimate fracture load than are areal cortical index, canal-to-calcar ratio, and medial cortical ratio. Cite this article: J. G. Skedros, C. S. Mears, W. Z. Burkhead. Ultimate fracture load of cadaver proximal humeri correlates more strongly with mean combined cortical thickness than with areal cortical index, DEXA density, or canal-to-calcar ratio. Bone Joint Res 2017;6:1–7. DOI: 10.1302/2046-3758.61.BJR-2016-0145.R1


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Lädermann A Tay E Collin P Piotton S Chiu C Michelet A Charbonnier C

Objectives

To date, no study has considered the impact of acromial morphology on shoulder range of movement (ROM). The purpose of our study was to evaluate the effects of lateralization of the centre of rotation (COR) and neck-shaft angle (NSA) on shoulder ROM after reverse shoulder arthroplasty (RSA) in patients with different scapular morphologies.

Methods

3D computer models were constructed from CT scans of 12 patients with a critical shoulder angle (CSA) of 25°, 30°, 35°, and 40°. For each model, shoulder ROM was evaluated at a NSA of 135° and 145°, and lateralization of 0 mm, 5 mm, and 10 mm for seven standardized movements: glenohumeral abduction, adduction, forward flexion, extension, internal rotation with the arm at 90° of abduction, as well as external rotation with the arm at 10° and 90° of abduction.


Bone & Joint Research
Vol. 5, Issue 10 | Pages 453 - 460
1 Oct 2016
Ernstbrunner L Werthel J Hatta T Thoreson AR Resch H An K Moroder P

Objectives

The bony shoulder stability ratio (BSSR) allows for quantification of the bony stabilisers in vivo. We aimed to biomechanically validate the BSSR, determine whether joint incongruence affects the stability ratio (SR) of a shoulder model, and determine the correct parameters (glenoid concavity versus humeral head radius) for calculation of the BSSR in vivo.

Methods

Four polyethylene balls (radii: 19.1 mm to 38.1 mm) were used to mould four fitting sockets in four different depths (3.2 mm to 19.1mm). The SR was measured in biomechanical congruent and incongruent experimental series. The experimental SR of a congruent system was compared with the calculated SR based on the BSSR approach. Differences in SR between congruent and incongruent experimental conditions were quantified. Finally, the experimental SR was compared with either calculated SR based on the socket concavity or plastic ball radius.


Bone & Joint Research
Vol. 3, Issue 4 | Pages 117 - 122
1 Apr 2014
Uhthoff HK Coletta E Trudel G

Objectives

Although many clinical and experimental investigations have shed light on muscle atrophy and intramuscular accumulation of fat after rotator cuff disruption, none have reported on their onset in the absence of muscle retraction.

Methods

In 30 rabbits, we detached one supraspinatus (SSP) tendon and repaired it immediately, thus preventing muscle retraction. The animals were killed in groups of 10 at one, two and six weeks. Both shoulders of 15 non-operated rabbits served as controls. We measured the weight and volume of SSP muscles and quantified the cross-sectional area of intramuscular fat (i-fat) histologically.