Aims. Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with
Aims. The antidiabetic agent metformin inhibits fibrosis in various organs. This study aims to elucidate the effects of hyperglycaemia and metformin on knee joint capsule fibrosis in mice. Methods. Eight-week-old wild-type (WT) and type 2
Objectives. Diabetes mellitus (DM) is known to impair fracture healing. Increasing evidence suggests that some microRNA (miRNA) is involved in the pathophysiology of diabetes and its complications. We hypothesized that the functions of miRNA and changes to their patterns of expression may be implicated in the pathogenesis of impaired fracture healing in DM. Methods. Closed transverse fractures were created in the femurs of 116 rats, with half assigned to the DM group and half assigned to the control group. Rats with DM were induced by a single intraperitoneal injection of streptozotocin. At post-fracture days five, seven, 11, 14, 21, and 28, miRNA was extracted from the newly generated tissue at the fracture site. Microarray analysis was performed with miRNA samples from each group on post-fracture days five and 11. For further analysis, real-time polymerase chain reaction (PCR) analysis was performed at each timepoint. Results. Microarray analysis showed that there were 14 miRNAs at day five and 17 miRNAs at day 11, with a greater than twofold change in the DM group compared with the control group. Among these types of miRNA, five were selected based on a comparative and extended literature review. Real-time PCR analysis revealed that five types of miRNA (miR-140-3p, miR-140-5p, miR-181a-1-3p, miR-210-3p, and miR-222-3p) were differentially expressed with changing patterns of expression during fracture healing in
Aims. The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods.
Objectives. The aim of this study was to investigate the effect of hyperglycaemia on oxidative stress markers and inflammatory and matrix gene expression within tendons of normal and
Aims. A systematic literature review focusing on how long before surgery concurrent viral or bacterial infections (respiratory and urinary infections) should be treated in hip fracture patients, and if there is evidence for delaying this surgery. Methods. A total of 11 databases were examined using the COre, Standard, Ideal (COSI) protocol. Bibliographic searches (no chronological or linguistic restriction) were conducted using, among other methods, the Patient, Intervention, Comparison, Outcome (PICO) template. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for flow diagram and checklist. Final reading of the complete texts was conducted in English, French, and Spanish. Classification of papers was completed within five levels of evidence (LE). Results. There were a total of 621 hits (526 COre; 95 Standard, Ideal) for screening identification, and 107 records were screened. Overall 67 full-text articles were assessed for eligibility, and 21 articles were included for the study question. A total of 46 full-text articles were excluded with reasons. No studies could be included in quantitative synthesis (meta-analyses), and there were many confounding variables including surgeons’ experience, prosthesis models used, and surgical technique. Conclusion. Patients with hip fracture and with a viral infection in the upper respiratory tract or without major clinical symptoms should be operated on as soon as possible (LE: I-III). There is no evidence that patients with coronavirus disease 2019 (COVID-19) should be treated differently. In relation to pneumonia, its prevention is a major issue. Antibiotics should be administered if surgery is delayed by > 72 hours or if bacterial infection is present in the lower respiratory tract (LE: III-V). In patients with hip fracture and urinary tract infection (UTI), delaying surgery may provoke further complications (LE: I). However,
Aims. The purpose of this study was to evaluate the in vitro effects of apocynin, an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase (NOX) and a downregulator of intracellular reactive oxygen species (ROS), on high glucose-induced oxidative stress on tenocytes. Methods. Tenocytes from normal Sprague-Dawley rats were cultured in both control and high-glucose conditions. Apocynin was added at cell seeding, dividing the tenocytes into four groups: the control group; regular glucose with apocynin (RG apo+); high glucose with apocynin (HG apo+); and high glucose without apocynin (HG apo–). Reactive oxygen species production, cell proliferation, apoptosis and messenger RNA (mRNA) expression of NOX1 and 4, and interleukin-6 (IL-6) were determined in vitro. Results. Expression of NOX1, NOX4, and IL-6 mRNA in the HG groups was significantly higher compared with that in the RG groups, and NOX1, NOX4, and IL-6 mRNA expression in the HG apo+ group was significantly lower compared with that in the HG apo– group. Cell proliferation in the RG apo+ group was significantly higher than in the control group and was also significantly higher in the HG apo+ group than in the HG apo– group. Both the ROS accumulation and the amounts of apoptotic cells in the HG groups were greater than those in the RG groups and were significantly less in the HG apo+ group than in the HG apo– group. Conclusion. Apocynin reduced ROS production and cell death via NOX inhibition in high-glucose conditions. Apocynin is therefore a potential prodrug in the treatment of
Charcot neuroarthropathy is a rare but serious complication of diabetes, causing progressive destruction of the bones and joints of the foot leading to deformity, altered biomechanics and an increased risk of ulceration. Management is complicated by a lack of consensus on diagnostic criteria and an incomplete understanding of the pathogenesis. In this review, we consider recent insights into the development of Charcot neuroarthropathy. It is likely to be dependent on several interrelated factors which may include a genetic pre-disposition in combination with
Objectives. Pulsed electromagnetic field (PEMF) stimulation was evaluated after anterior cervical discectomy and fusion (ACDF) procedures in a randomized, controlled clinical study performed for United States Food and Drug Administration (FDA) approval. PEMF significantly increased fusion rates at six months, but 12-month fusion outcomes for subjects at elevated risk for pseudoarthrosis were not thoroughly reported. The objective of the current study was to evaluate the effect of PEMF treatment on subjects at increased risk for pseudoarthrosis after ACDF procedures. Methods. Two evaluations were performed that compared fusion rates between PEMF stimulation and a historical control (160 subjects) from the FDA investigational device exemption (IDE) study: a post hoc (PH) analysis of high-risk subjects from the FDA study (PH PEMF); and a multicentre, open-label (OL) study consisting of 274 subjects treated with PEMF (OL PEMF). Fisher’s exact test and multivariate logistic regression was used to compare fusion rates between PEMF-treated subjects and historical controls. Results. In separate comparisons of PH PEMF and OL PEMF groups to the historical control group, PEMF treatment significantly (p < 0.05, Fisher’s exact test) increased the fusion rate at six and 12 months for certain high-risk subjects who had at least one clinical risk factor of being elderly, a nicotine user, osteoporotic, or
Objectives. Our objective in this article is to test the hypothesis that
type 2 diabetes mellitus (T2DM) is a factor in the onset and progression
of osteoarthritis, and to characterise the quality of the articular
cartilage in an appropriate rat model. Methods. T2DM rats were obtained from the UC Davis group and compared
with control Lewis rats. The
Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models. Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.Aims
Methods
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article:
The optimal choice of management for proximal humerus fractures (PHFs) has been increasingly discussed in the literature, and this work aimed to answer the following questions: 1) what are the incidence rates of PHF in the geriatric population in the USA; 2) what is the mortality rate after PHF in the elderly population, specifically for distinct treatment procedures; and 3) what factors influence the mortality rate? PHFs occurring between 1 January 2009 and 31 December 2019 were identified from the Medicare physician service records. Incidence rates were determined, mortality rates were calculated, and semiparametric Cox regression was applied, incorporating 23 demographic, clinical, and socioeconomic covariates, to compare the mortality risk between treatments.Aims
Methods
This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD). The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.Aims
Methods
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.Aims
Methods
Osteoarthritis (OA) is a degenerative disease resulting from progressive joint destruction caused by many factors. Its pathogenesis is complex and has not been elucidated to date. Advanced glycation end products (AGEs) are a series of irreversible and stable macromolecular complexes formed by reducing sugar with protein, lipid, and nucleic acid through a non-enzymatic glycosylation reaction (Maillard reaction). They are an important indicator of the degree of ageing. Currently, it is considered that AGEs accumulation in vivo is a molecular basis of age-induced OA, and AGEs production and accumulation in vivo is one of the important reasons for the induction and acceleration of the pathological changes of OA. In recent years, it has been found that AGEs are involved in a variety of pathological processes of OA, including extracellular matrix degradation, chondrocyte apoptosis, and autophagy. Clearly, AGEs play an important role in regulating the expression of OA-related genes and maintaining the chondrocyte phenotype and the stability of the intra-articular environment. This article reviews the latest research results of AGEs in a variety of pathological processes of OA, to provide a new direction for the study of OA pathogenesis and a new target for prevention and treatment. Cite this article:
Advanced glycation end-products (AGEs) are a post-translational modification of collagen that form spontaneously in the skeletal matrix due to the presence of reducing sugars, such as glucose. The accumulation of AGEs leads to collagen cross-linking, which adversely affects bone quality and has been shown to play a major role in fracture risk. Thus, intervening in the formation and accumulation of AGEs may be a viable means of protecting bone quality. An Objectives
Methods
The osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) balance is of the utmost importance in fracture healing. The aim of this study was therefore to investigate the impact of nonosteogenic factors on OPG and RANKL levels. Serum obtained from 51 patients with long bone fractures was collected over 48 weeks. The OPG and serum sRANKL (soluble RANKL) concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Smoking habit, diabetes, and alcohol consumption were recorded.Objectives
Methods