Advertisement for orthosearch.org.uk
Results 1 - 20 of 63
Results per page:
Bone & Joint Research
Vol. 1, Issue 8 | Pages 180 - 191
1 Aug 2012
Stilling M Kold S de Raedt S Andersen NT Rahbek O Søballe K

Objectives. The accuracy and precision of two new methods of model-based radiostereometric analysis (RSA) were hypothesised to be superior to a plain radiograph method in the assessment of polyethylene (PE) wear. Methods. A phantom device was constructed to simulate three-dimensional (3D) PE wear. Images were obtained consecutively for each simulated wear position for each modality. Three commercially available packages were evaluated: model-based RSA using laser-scanned cup models (MB-RSA), model-based RSA using computer-generated elementary geometrical shape models (EGS-RSA), and PolyWare. Precision (95% repeatability limits) and accuracy (Root Mean Square Errors) for two-dimensional (2D) and 3D wear measurements were assessed. Results. The precision for 2D wear measures was 0.078 mm, 0.102 mm, and 0.076 mm for EGS-RSA, MB-RSA, and PolyWare, respectively. For the 3D wear measures the precision was 0.185 mm, 0.189 mm, and 0.244 mm for EGS-RSA, MB-RSA, and PolyWare respectively. Repeatability was similar for all methods within the same dimension, when compared between 2D and 3D (all p > 0.28). For the 2D RSA methods, accuracy was below 0.055 mm and at least 0.335 mm for PolyWare. For 3D measurements, accuracy was 0.1 mm, 0.2 mm, and 0.3 mm for EGS-RSA, MB-RSA and PolyWare respectively. PolyWare was less accurate compared with RSA methods (p = 0.036). No difference was observed between the RSA methods (p = 0.10). Conclusions. For all methods, precision and accuracy were better in 2D, with RSA methods being superior in accuracy. Although less accurate and precise, 3D RSA defines the clinically relevant wear pattern (multidirectional). PolyWare is a good and low-cost alternative to RSA, despite being less accurate and requiring a larger sample size


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims. In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method. Methods. We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis. Results. The results showed that the LLDS has high inter-rater reliability. As illustrated by the heat map, the distribution of Japanese Investigation Committee (JIC) classification type C necrotic lesions exhibited clustering characteristics, with the lesions being concentrated in the northern and eastern regions, forming a hot zone (90% probability) centred on the N4-N6E2, N3-N6E units of outer ring blocks. Statistical results showed that the distribution difference between type C2 and type C1 was most significant in the E1 and E2 units and, combined with the heat map, indicated that the spatial distribution differences at N3-N6E1 and N1-N3E2 units are crucial in understanding type C1 and C2 necrotic lesions. Conclusion. The LLDS can be used to accurately measure the spatial location of necrotic lesions and display their distribution characteristics. Cite this article: Bone Joint Res 2024;13(6):294–305


Bone & Joint Research
Vol. 12, Issue 9 | Pages 590 - 597
20 Sep 2023
Uemura K Otake Y Takashima K Hamada H Imagama T Takao M Sakai T Sato Y Okada S Sugano N

Aims. This study aimed to develop and validate a fully automated system that quantifies proximal femoral bone mineral density (BMD) from CT images. Methods. The study analyzed 978 pairs of hip CT and dual-energy X-ray absorptiometry (DXA) measurements of the proximal femur (DXA-BMD) collected from three institutions. From the CT images, the femur and a calibration phantom were automatically segmented using previously trained deep-learning models. The Hounsfield units of each voxel were converted into density (mg/cm. 3. ). Then, a deep-learning model trained by manual landmark selection of 315 cases was developed to select the landmarks at the proximal femur to rotate the CT volume to the neutral position. Finally, the CT volume of the femur was projected onto the coronal plane, and the areal BMD of the proximal femur (CT-aBMD) was quantified. CT-aBMD correlated to DXA-BMD, and a receiver operating characteristic (ROC) analysis quantified the accuracy in diagnosing osteoporosis. Results. CT-aBMD was successfully measured in 976/978 hips (99.8%). A significant correlation was found between CT-aBMD and DXA-BMD (r = 0.941; p < 0.001). In the ROC analysis, the area under the curve to diagnose osteoporosis was 0.976. The diagnostic sensitivity and specificity were 88.9% and 96%, respectively, with the cutoff set at 0.625 g/cm. 2. . Conclusion. Accurate DXA-BMD measurements and diagnosis of osteoporosis were performed from CT images using the system developed herein. As the models are open-source, clinicians can use the proposed system to screen osteoporosis and determine the surgical strategy for hip surgery. Cite this article: Bone Joint Res 2023;12(9):590–597


Bone & Joint Research
Vol. 9, Issue 7 | Pages 360 - 367
1 Jul 2020
Kawahara S Hara T Sato T Kitade K Shimoto T Nakamura T Mawatari T Higaki H Nakashima Y

Aims. Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Methods. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated. Results. Mean measurement errors of the image-matching analyses were significantly small (2.5° (SD 1.4°) and 0.1° (SD 0.9°) in the RA and RI, respectively) relative to those of the 2D measurements. Intra- and interobserver differences were similarly small from the clinical perspective. Conclusion. We have developed a computational analysis of acetabular component orientation using an image-matching technique with small measurement errors compared to visual evaluations regardless of the pelvic tilt or rotation. Cite this article: Bone Joint Res 2020;9(7):360–367


Bone & Joint Research
Vol. 13, Issue 4 | Pages 184 - 192
18 Apr 2024
Morita A Iida Y Inaba Y Tezuka T Kobayashi N Choe H Ike H Kawakami E

Aims

This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model.

Methods

The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims

The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice.

Methods

A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock).


Bone & Joint Research
Vol. 13, Issue 12 | Pages 741 - 749
6 Dec 2024
Blichfeldt-Eckhardt MR Varnum C Lauridsen JT Rasmussen LE Mortensen WCP Jensen HI Vaegter HB Lambertsen KL

Aims

Better prediction of outcome after total hip arthroplasty (THA) is warranted. Systemic inflammation and central neuroinflammation are possibly involved in progression of osteoarthritis and pain. We explored whether inflammatory biomarkers in blood and cerebrospinal fluid (CSF) were associated with clinical outcome, and baseline pain or disability, 12 months after THA.

Methods

A total of 50 patients from the Danish Pain Research Biobank (DANPAIN-Biobank) between January and June 2018 were included. Postoperative outcome was assessed as change in Oxford Hip Score (OHS) from baseline to 12 months after THA, pain was assessed on a numerical rating scale, and disability using the Pain Disability Index. Multiple regression models for each clinical outcome were included for biomarkers in blood and CSF, respectively, including age, sex, BMI, and Kellgren-Lawrence score.


Bone & Joint Research
Vol. 11, Issue 12 | Pages 873 - 880
1 Dec 2022
Watanabe N Miyatake K Takada R Ogawa T Amano Y Jinno T Koga H Yoshii T Okawa A

Aims

Osteoporosis is common in total hip arthroplasty (THA) patients. It plays a substantial factor in the surgery’s outcome, and previous studies have revealed that pharmacological treatment for osteoporosis influences implant survival rate. The purpose of this study was to examine the prevalence of and treatment rates for osteoporosis prior to THA, and to explore differences in osteoporosis-related biomarkers between patients treated and untreated for osteoporosis.

Methods

This single-centre retrospective study included 398 hip joints of patients who underwent THA. Using medical records, we examined preoperative bone mineral density measures of the hip and lumbar spine using dual energy X-ray absorptiometry (DXA) scans and the medications used to treat osteoporosis at the time of admission. We also assessed the following osteoporosis-related biomarkers: tartrate-resistant acid phosphatase 5b (TRACP-5b); total procollagen type 1 amino-terminal propeptide (total P1NP); intact parathyroid hormone; and homocysteine.


Bone & Joint Research
Vol. 9, Issue 5 | Pages 242 - 249
1 May 2020
Bali K Smit K Ibrahim M Poitras S Wilkin G Galmiche R Belzile E Beaulé PE

Aims. The aim of the current study was to assess the reliability of the Ottawa classification for symptomatic acetabular dysplasia. Methods. In all, 134 consecutive hips that underwent periacetabular osteotomy were categorized using a validated software (Hip2Norm) into four categories of normal, lateral/global, anterior, or posterior. A total of 74 cases were selected for reliability analysis, and these included 44 dysplastic and 30 normal hips. A group of six blinded fellowship-trained raters, provided with the classification system, looked at these radiographs at two separate timepoints to classify the hips using standard radiological measurements. Thereafter, a consensus meeting was held where a modified flow diagram was devised, before a third reading by four raters using a separate set of 74 radiographs took place. Results. Intrarater results per surgeon between Time 1 and Time 2 showed substantial to almost perfect agreement among the raters (κappa = 0.416 to 0.873). With respect to inter-rater reliability, at Time 1 and Time 2 there was substantial agreement overall between all surgeons (Time 1 κappa = 0.619; Time 2 κappa = 0.623). Posterior and anterior rating categories had moderate and fair agreement at Time 1 (posterior κappa = 0.557; anterior κappa = 0.438) and Time 2 (posterior κappa = 0.506; anterior κappa = 0.250), respectively. At Time 3, overall reliability (κappa = 0.687) and posterior and anterior reliability (posterior κappa = 0.579; anterior κappa = 0.521) improved from Time 1 and Time 2. Conclusion. The Ottawa classification system provides a reliable way to identify three categories of acetabular dysplasia that are well-aligned with surgical management. The term ‘borderline dysplasia’ should no longer be used. Cite this article: Bone Joint Res. 2020;9(5):242–249


Bone & Joint Research
Vol. 11, Issue 12 | Pages 881 - 889
1 Dec 2022
Gómez-Barrena E Padilla-Eguiluz N López-Marfil M Ruiz de la Reina R

Aims

Successful cell therapy in hip osteonecrosis (ON) may help to avoid ON progression or total hip arthroplasty (THA), but the achieved bone regeneration is unclear. The aim of this study was to evaluate amount and location of bone regeneration obtained after surgical injection of expanded autologous mesenchymal stromal cells from the bone marrow (BM-hMSCs).

Methods

A total of 20 patients with small and medium-size symptomatic stage II femoral head ON treated with 140 million BM-hMSCs through percutaneous forage in the EudraCT 2012-002010-39 clinical trial were retrospectively evaluated through preoperative and postoperative (three and 12 months) MRI. Then, 3D reconstruction of the original lesion and the observed postoperative residual damage after bone regeneration were analyzed and compared per group based on treatment efficacy.


Bone & Joint Research
Vol. 6, Issue 9 | Pages 530 - 534
1 Sep 2017
Krakow L Klockow A Roehner E Brodt S Eijer H Bossert J Matziolis G

Objectives. The determination of the volumetric polyethylene wear on explanted material requires complicated equipment, which is not available in many research institutions. Our aim in this study was to present and validate a method that only requires a set of polyetheretherketone balls and a laboratory balance to determine wear. Methods. The insert to be measured was placed on a balance, and a ball of the appropriate diameter was inserted. The cavity remaining between the ball and insert caused by wear was filled with contrast medium and the weight of the contrast medium was recorded. The volume was calculated from the known density of the liquid. The precision, inter- and intraobserver reliability, were determined by four investigators on four days using nine inserts with specified wear (0.094 ml to 1.626 ml), and the intra-class correlation coefficient was calculated. The feasibility of using this method in routine clinical practice and the time required for measurement were tested on 84 explanted inserts by one investigator. Results. In order to get the mean for all investigators and determinations, the deviation between the measured and specified wear was -0.08 ml . (sd. 0.12; -0.21 to 0.11). The interobserver reliability was 0.989 ml (95% confidence interval (CI) 0.964 to 0.997) and the intraobserver reliability was 0.941 for observer 1 (95% CI 0.846 to 0.985), 0.983 for observer 2 (95% CI 0.956 to 0.995), 0.939 for observer 3 (95% CI 0.855 to 0.984), and 0.934 for observer 4 (95% CI 0.790 to 0.984). The mean time required to examine the samples was two minutes . (sd. 2; 1 to 5). Conclusion. The method presented here was shown to be sufficiently precise for many settings and is a cost-effective and quick method of determining the volumetric wear of explanted acetabular components. However, the measurement of wear for scientific purposes will probably continue to involve more accurate and dedicated laboratory equipment. Cite this article: Bone Joint Res 2017;6:530–534


Bone & Joint Research
Vol. 11, Issue 5 | Pages 270 - 277
6 May 2022
Takegami Y Seki T Osawa Y Imagama S

Aims

Periprosthetic hip fractures (PPFs) after total hip arthroplasty are difficult to treat. Therefore, it is important to identify modifiable risk factors such as stem selection to reduce the occurrence of PPFs. This study aimed to clarify differences in fracture torque, surface strain, and fracture type analysis between three different types of cemented stems.

Methods

We conducted biomechanical testing of bone analogues using six cemented stems of three different types: collarless polished tapered (CPT) stem, Versys Advocate (Versys) stem, and Charnley-Marcel-Kerboull (CMK) stem. Experienced surgeons implanted each of these types of stems into six bone analogues, and the analogues were compressed and internally rotated until failure. Torque to fracture and fracture type were recorded. We also measured surface strain distribution using triaxial rosettes.


Bone & Joint Research
Vol. 11, Issue 3 | Pages 180 - 188
1 Mar 2022
Rajpura A Asle SG Ait Si Selmi T Board T

Aims

Hip arthroplasty aims to accurately recreate joint biomechanics. Considerable attention has been paid to vertical and horizontal offset, but femoral head centre in the anteroposterior (AP) plane has received little attention. This study investigates the accuracy of restoration of joint centre of rotation in the AP plane.

Methods

Postoperative CT scans of 40 patients who underwent unilateral uncemented total hip arthroplasty were analyzed. Anteroposterior offset (APO) and femoral anteversion were measured on both the operated and non-operated sides. Sagittal tilt of the femoral stem was also measured. APO measured on axial slices was defined as the perpendicular distance between a line drawn from the anterior most point of the proximal femur (anterior reference line) to the centre of the femoral head. The anterior reference line was made parallel to the posterior condylar axis of the knee to correct for rotation.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 830 - 839
15 Dec 2021
Robertson G Wallace R Simpson AHRW Dawson SP

Aims

Assessment of bone mineral density (BMD) with dual-energy X-ray absorptiometry (DXA) is a well-established clinical technique, but it is not available in the acute trauma setting. Thus, it cannot provide a preoperative estimation of BMD to help guide the technique of fracture fixation. Alternative methods that have been suggested for assessing BMD include: 1) cortical measures, such as cortical ratios and combined cortical scores; and 2) aluminium grading systems from preoperative digital radiographs. However, limited research has been performed in this area to validate the different methods. The aim of this study was to investigate the evaluation of BMD from digital radiographs by comparing various methods against DXA scanning.

Methods

A total of 54 patients with distal radial fractures were included in the study. Each underwent posteroanterior (PA) and lateral radiographs of the injured wrist with an aluminium step wedge. Overall 27 patients underwent routine DXA scanning of the hip and lumbar spine, with 13 undergoing additional DXA scanning of the uninjured forearm. Analysis of radiographs was performed on ImageJ and Matlab with calculations of cortical measures, cortical indices, combined cortical scores, and aluminium equivalent grading.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 639 - 649
19 Oct 2021
Bergiers S Hothi H Henckel J Di Laura A Belzunce M Skinner J Hart A

Aims

Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning.

Methods

3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane.


Bone & Joint Research
Vol. 10, Issue 10 | Pages 629 - 638
20 Oct 2021
Hayashi S Hashimoto S Kuroda Y Nakano N Matsumoto T Ishida K Shibanuma N Kuroda R

Aims

This study aimed to evaluate the accuracy of implant placement with robotic-arm assisted total hip arthroplasty (THA) in patients with developmental dysplasia of the hip (DDH).

Methods

The study analyzed a consecutive series of 69 patients who underwent robotic-arm assisted THA between September 2018 and December 2019. Of these, 30 patients had DDH and were classified according to the Crowe type. Acetabular component alignment and 3D positions were measured using pre- and postoperative CT data. The absolute differences of cup alignment and 3D position were compared between DDH and non-DDH patients. Moreover, these differences were analyzed in relation to the severity of DDH. The discrepancy of leg length and combined offset compared with contralateral hip were measured.


Bone & Joint Research
Vol. 10, Issue 12 | Pages 780 - 789
1 Dec 2021
Eslam Pour A Lazennec JY Patel KP Anjaria MP Beaulé PE Schwarzkopf R

Aims

In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement.

Methods

Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data.


Bone & Joint Research
Vol. 10, Issue 9 | Pages 574 - 590
7 Sep 2021
Addai D Zarkos J Pettit M Sunil Kumar KH Khanduja V

Outcomes following different types of surgical intervention for femoroacetabular impingement (FAI) are well reported individually but comparative data are deficient. The purpose of this study was to conduct a systematic review (SR) and meta-analysis to analyze the outcomes following surgical management of FAI by hip arthroscopy (HA), anterior mini open approach (AMO), and surgical hip dislocation (SHD). This SR was registered with PROSPERO. An electronic database search of PubMed, Medline, and EMBASE for English and German language articles over the last 20 years was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We specifically analyzed and compared changes in patient-reported outcome measures (PROMs), α-angle, rate of complications, rate of revision, and conversion to total hip arthroplasty (THA). A total of 48 articles were included for final analysis with a total of 4,384 hips in 4,094 patients. All subgroups showed a significant correction in mean α angle postoperatively with a mean change of 28.8° (95% confidence interval (CI) 21 to 36.5; p < 0.01) after AMO, 21.1° (95% CI 15.1 to 27; p < 0.01) after SHD, and 20.5° (95% CI 16.1 to 24.8; p < 0.01) after HA. The AMO group showed a significantly higher increase in PROMs (3.7; 95% CI 3.2 to 4.2; p < 0.01) versus arthroscopy (2.5; 95% CI 2.3 to 2.8; p < 0.01) and SHD (2.4; 95% CI 1.5 to 3.3; p < 0.01). However, the rate of complications following AMO was significantly higher than HA and SHD. All three surgical approaches offered significant improvements in PROMs and radiological correction of cam deformities. All three groups showed similar rates of revision procedures but SHD had the highest rate of conversion to a THA. Revision rates were similar for all three revision procedures.


Bone & Joint Research
Vol. 10, Issue 8 | Pages 498 - 513
3 Aug 2021
Liu Z Lu C Shen P Chou S Shih C Chen J Tien YC

Aims

Interleukin (IL)-1β is one of the major pathogenic regulators during the pathological development of intervertebral disc degeneration (IDD). However, effective treatment options for IDD are limited. Suramin is used to treat African sleeping sickness. This study aimed to investigate the pharmacological effects of suramin on mitigating IDD and to characterize the underlying mechanism.

Methods

Porcine nucleus pulposus (NP) cells were treated with vehicle, 10 ng/ml IL-1β, 10 μM suramin, or 10 μM suramin plus IL-1β. The expression levels of catabolic and anabolic proteins, proinflammatory cytokines, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB-related signalling molecules were assessed by Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis. Flow cytometry was applied to detect apoptotic cells. The ex vivo effects of suramin were examined using IDD organ culture and differentiation was analyzed by Safranin O-Fast green and Alcian blue staining.