Objectives. This study aimed to explore the role of miR-320a in the pathogenesis of osteoarthritis (OA). Methods. Human cartilage cells (C28/I2) were transfected with miR-320a or antisense oligonucleotides (ASO)-miR-320a, and treated with IL-1β. Subsequently the expression of collagen type II alpha 1 (Col2α1) and aggrecan (ACAN), and the concentrations of sulfated glycosaminoglycans (sGAG) and matrix metallopeptidase 13 (MMP-13), were assessed. Luciferase reporter assay, qRT-PCR, and Western blot were performed to explore whether pre-B-cell leukemia Homeobox 3 (PBX3) was a target of miR-320a. Furthermore, cells were co-transfected with miR-320a and PBX3 expressing vector, or cells were transfected with miR-320a and treated with a nuclear factor kappa B (NF-κB) antagonist MG132. The changes in Col2α1 and ACAN expression, and in sGAG and MMP-13 concentrations, were measured again. Statistical comparisons were made between two groups by using the two-tailed
Objectives. This study aims to assess the correlation of CT-based structural
rigidity analysis with mechanically determined axial rigidity in
normal and metabolically diseased rat bone. Methods. A total of 30 rats were divided equally into normal, ovariectomized,
and partially nephrectomized groups. Cortical and trabecular bone
segments from each animal underwent micro-CT to assess their average
and minimum axial rigidities using structural rigidity analysis.
Following imaging, all specimens were subjected to uniaxial compression
and assessment of mechanically-derived axial rigidity. Results. The average structural rigidity-based axial rigidity was well
correlated with the average mechanically-derived axial rigidity
results (R. 2. = 0.74). This correlation improved significantly
(p <
0.0001) when the CT-based Structural Rigidity Analysis (CTRA)
minimum axial rigidity was correlated to the mechanically-derived
minimum axial rigidity results (R. 2. = 0.84). Tests of
slopes in the mixed model regression analysis indicated a significantly
steeper slope for the average axial rigidity compared with the minimum
axial rigidity (p = 0.028) and a significant difference in the intercepts
(p = 0.022). The CTRA average and minimum axial rigidities were
correlated with the mechanically-derived average and minimum axial
rigidities using
Whilst gait speed is variable between healthy and injured adults, the extent to which speed alone alters the 3D A total of 26 men and 25 women (18 to 35 years old) participated in this study. Participants walked on a treadmill with the KneeKG system at a slow imposed speed (2 km/hr) for three trials, then at a self-selected comfortable walking speed for another three trials. Paired Objectives
Methods
Ultraviolet (UV) light-mediated photofunctionalisation is known to improve osseointegration of pure titanium (Ti). However, histological examination of titanium alloy (Ti6Al4V), which is frequently applied in orthopaedic and dental surgery, has not yet been performed. This study examined the osseointegration of photofunctionalised Ti6Al4V implants. Ti and Ti6Al4V implants were treated with UV light, and the chemical composition and contact angle on the surfaces were evaluated to confirm photofunctionalisation. The implants were inserted into femurs in rats, and the rats were killed two or four weeks after the surgery. For histomorphometric analysis, both the bone–implant contact (BIC) ratio and the bone volume (BV) ratio were calculated from histological analysis and microcomputed tomography data.Objectives
Methods
The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. Objectives
Methods
Lengthening osteotomies of the calcaneus in children are in general
grafted with bone from the iliac crest. Artificial bone grafts have
been introduced, however, their structural and clinical durability
has not been documented. Radiostereometric analysis (RSA) is a very
accurate and precise method for measurements of rigid body movements including
the evaluation of joint implant and fracture stability, however,
RSA has not previously been used in clinical studies of calcaneal
osteotomies. We assessed the precision of RSA as a measurement tool
in a lateral calcaneal lengthening osteotomy (LCLO). LCLO was performed in six fixed adult cadaver feet. Tantalum
markers were inserted on each side of the osteotomy and in the cuboideum.
Lengthening was done with a plexiglas wedge. A total of 24 radiological
double examinations were obtained. Two feet were excluded due to
loose and poorly dispersed markers. Precision was assessed as systematic
bias and 95% repeatability limits.Objectives
Methods
The purpose of this study was to compare the results and complications of tibial lengthening over an intramedullary nail with treatment using the traditional Ilizarov method. In this matched case study, 16 adult patients underwent 19 tibial lengthening over nails (LON) procedures. For the matched case group, 17 patients who underwent 19 Ilizarov tibial lengthenings were retrospectively matched to the LON group.Objectives
Methods
We aimed to examine the characteristics of deep venous flow in
the leg in a cast and the effects of a wearable neuromuscular stimulator
(geko; FirstKind Ltd) and also to explore the participants’ tolerance
of the stimulator. This is an open-label physiological study on ten healthy volunteers.
Duplex ultrasonography of the superficial femoral vein measured
normal flow and cross-sectional area in the standing and supine
positions (with the lower limb initially horizontal and then elevated).
Flow measurements were repeated during activation of the geko stimulator
placed over the peroneal nerve. The process was repeated after the
application of a below-knee cast. Participants evaluated discomfort
using a questionnaire (verbal rating score) and a scoring index
(visual analogue scale).Objectives
Methods
Recent studies have shown that modulating inflammation-related
lipid signalling after a bone fracture can accelerate healing in
animal models. Specifically, decreasing 5-lipoxygenase (5-LO) activity
during fracture healing increases cyclooxygenase-2 (COX-2) expression
in the fracture callus, accelerates chondrogenesis and decreases
healing time. In this study, we test the hypothesis that 5-LO inhibition
will increase direct osteogenesis. Bilateral, unicortical femoral defects were used in rats to measure
the effects of local 5-LO inhibition on direct osteogenesis. The
defect sites were filled with a polycaprolactone (PCL) scaffold
containing 5-LO inhibitor (A-79175) at three dose levels, scaffold
with drug carrier, or scaffold only. Drug release was assessed Objectives
Methods