Advertisement for orthosearch.org.uk
Results 1 - 100 of 223
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 725 - 740
5 Dec 2024
Xing J Liu S

Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds’ diverse roles and potential applications in bone defect treatment. Cite this article: Bone Joint Res 2024;13(12):725–740


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 596 - 610
21 Oct 2024
Toegel S Martelanz L Alphonsus J Hirtler L Gruebl-Barabas R Cezanne M Rothbauer M Heuberer P Windhager R Pauzenberger L

Aims

This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated.

Methods

Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes. Cite this article: Bone Joint Res 2024;13(9):462–473


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 978 - 985
1 Sep 2024
Savoie III FH Delvadia BP Tate JP Winter JE Williams GH Sherman WF O’Brien MJ

Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears.

Cite this article: Bone Joint J 2024;106-B(9):978–985.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1021 - 1030
1 Sep 2024
Oto J Herranz R Fuertes M Plana E Verger P Baixauli F Amaya JV Medina P

Aims

Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers.

Methods

We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 261 - 271
1 Jun 2024
Udomsinprasert W Mookkhan N Tabtimnark T Aramruang T Ungsudechachai T Saengsiwaritt W Jittikoon J Chaikledkaew U Honsawek S

Aims

This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients.

Methods

A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry.


Bone & Joint Research
Vol. 13, Issue 5 | Pages 214 - 225
3 May 2024
Groven RVM Kuik C Greven J Mert Ü Bouwman FG Poeze M Blokhuis TJ Huber-Lang M Hildebrand F Cillero-Pastor B van Griensven M

Aims

The aim of this study was to determine the fracture haematoma (fxH) proteome after multiple trauma using label-free proteomics, comparing two different fracture treatment strategies.

Methods

A porcine multiple trauma model was used in which two fracture treatment strategies were compared: early total care (ETC) and damage control orthopaedics (DCO). fxH was harvested and analyzed using liquid chromatography-tandem mass spectrometry. Per group, discriminating proteins were identified and protein interaction analyses were performed to further elucidate key biomolecular pathways in the early fracture healing phase.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 32 - 39
1 May 2024
Briem T Stephan A Stadelmann VA Fischer MA Pfirrmann CWA Rüdiger HA Leunig M

Aims

The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI).

Methods

This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm2, who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims. To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time. Methods. We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated. Results. The mean time between the implantation and the second CT scan was two years (1 to 5). The mean age of the patients during CTAC implantation was 75 years (60 to 92). The mean scaffold-bone contact area increased from 16% (SD 12.6) to 28% (SD 11.9). The mean scaffold-bone distance decreased from a mean of 6.5 mm (SD 2.0) to 5.5 mm (SD 1.6). None of the CTACs were revised or radiologically loose. Conclusion. There was a statistically significant increase of scaffold-bone contact area over time, but the total contact area of the scaffold in relation to the acetabular bone remained relatively low. As all implants remained well fixed, the question remains to what extend the scaffold contributes to the observed stability, in relation to the screws. A future design implication might be an elimination of the bulky scaffold component. This design modification would reduce production costs and may optimize the primary fit of the implant. Cite this article: Bone Joint J 2024;106-B(4):359–364


Aims

Osteochondral lesions of the talus (OLT) are a common cause of disability and chronic ankle pain. Many operative treatment strategies have been introduced; however, they have their own disadvantages. Recently lesion repair using autologous cartilage chip has emerged therefore we investigated the efficacy of particulated autologous cartilage transplantation (PACT) in OLT.

Methods

We retrospectively analyzed 32 consecutive symptomatic patients with OLT who underwent PACT with minimum one-year follow-up. Standard preoperative radiography and MRI were performed for all patients. Follow-up second-look arthroscopy or MRI was performed with patient consent approximately one-year postoperatively. Magnetic resonance Observation of Cartilage Repair Tissue (MOCART) score and International Cartilage Repair Society (ICRS) grades were used to evaluate the quality of the regenerated cartilage. Clinical outcomes were assessed using the pain visual analogue scale (VAS), Foot Function Index (FFI), and Foot Ankle Outcome Scale (FAOS).


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 615 - 623
3 Oct 2023
Helwa-Shalom O Saba F Spitzer E Hanhan S Goren K Markowitz SI Shilo D Khaimov N Gellman YN Deutsch D Blumenfeld A Nevo H Haze A

Aims

Cartilage injuries rarely heal spontaneously and often require surgical intervention, leading to the formation of biomechanically inferior fibrous tissue. This study aimed to evaluate the possible effect of amelogenin on the healing process of a large osteochondral injury (OCI) in a rat model.

Methods

A reproducible large OCI was created in the right leg femoral trochlea of 93 rats. The OCIs were treated with 0.1, 0.5, 1.0, 2.5, or 5.0 μg/μl recombinant human amelogenin protein (rHAM+) dissolved in propylene glycol alginate (PGA) carrier, or with PGA carrier alone. The degree of healing was evaluated 12 weeks after treatment by morphometric analysis and histological evaluation. Cell recruitment to the site of injury as well as the origin of the migrating cells were assessed four days after treatment with 0.5 μg/μl rHAM+ using immunohistochemistry and immunofluorescence.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 546 - 558
12 Sep 2023
Shen J Wei Z Wang S Wang X Lin W Liu L Wang G

Aims

This study aimed to evaluate the effectiveness of the induced membrane technique for treating infected bone defects, and to explore the factors that might affect patient outcomes.

Methods

A comprehensive search was performed in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases between 1 January 2000 and 31 October 2021. Studies with a minimum sample size of five patients with infected bone defects treated with the induced membrane technique were included. Factors associated with nonunion, infection recurrence, and additional procedures were identified using logistic regression analysis on individual patient data.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.


Bone & Joint Open
Vol. 4, Issue 7 | Pages 516 - 522
10 Jul 2023
Mereddy P Nallamilli SR Gowda VP Kasha S Godey SK Nallamilli RR GPRK R Meda VGR

Aims

Musculoskeletal infection is a devastating complication in both trauma and elective orthopaedic surgeries that can result in significant morbidity. Aim of this study was to assess the effectiveness and complications of local antibiotic impregnated dissolvable synthetic calcium sulphate beads (Stimulan Rapid Cure) in the hands of different surgeons from multiple centres in surgically managed bone and joint infections.

Methods

Between January 2019 and December 2022, 106 patients with bone and joint infections were treated by five surgeons in five hospitals. Surgical debridement and calcium sulphate bead insertion was performed for local elution of antibiotics in high concentration. In all, 100 patients were available for follow-up at regular intervals. Choice of antibiotic was tailor made for each patient in consultation with microbiologist based on the organism grown on culture and the sensitivity. In majority of our cases, we used a combination of vancomycin and culture sensitive heat stable antibiotic after a thorough debridement of the site. Primary wound closure was achieved in 99 patients and a split skin graft closure was done in one patient. Mean follow-up was 20 months (12 to 30).


Bone & Joint Research
Vol. 12, Issue 7 | Pages 412 - 422
4 Jul 2023
Ferguson J Bourget-Murray J Hotchen AJ Stubbs D McNally M

Aims

Dead-space management, following dead bone resection, is an important element of successful chronic osteomyelitis treatment. This study compared two different biodegradable antibiotic carriers used for dead-space management, and reviewed clinical and radiological outcomes. All cases underwent single-stage surgery and had a minimum one-year follow-up.

Methods

A total of 179 patients received preformed calcium sulphate pellets containing 4% tobramycin (Group OT), and 180 patients had an injectable calcium sulphate/nanocrystalline hydroxyapatite ceramic containing gentamicin (Group CG). Outcome measures were infection recurrence, wound leakage, and subsequent fracture involving the treated segment. Bone-void filling was assessed radiologically at a minimum of six months post-surgery.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 397 - 411
3 Jul 2023
Ruan X Gu J Chen M Zhao F Aili M Zhang D

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by progressive cartilage degradation, synovial membrane inflammation, osteophyte formation, and subchondral bone sclerosis. Pathological changes in cartilage and subchondral bone are the main processes in OA. In recent decades, many studies have demonstrated that activin-like kinase 3 (ALK3), a bone morphogenetic protein receptor, is essential for cartilage formation, osteogenesis, and postnatal skeletal development. Although the role of bone morphogenetic protein (BMP) signalling in articular cartilage and bone has been extensively studied, many new discoveries have been made in recent years around ALK3 targets in articular cartilage, subchondral bone, and the interaction between the two, broadening the original knowledge of the relationship between ALK3 and OA. In this review, we focus on the roles of ALK3 in OA, including cartilage and subchondral bone and related cells. It may be helpful to seek more efficient drugs or treatments for OA based on ALK3 signalling in future.


The Bone & Joint Journal
Vol. 105-B, Issue 7 | Pages 751 - 759
1 Jul 2023
Lu V Andronic O Zhang JZ Khanduja V

Aims

Hip arthroscopy (HA) has become the treatment of choice for femoroacetabular impingement (FAI). However, less favourable outcomes following arthroscopic surgery are expected in patients with severe chondral lesions. The aim of this study was to assess the outcomes of HA in patients with FAI and associated chondral lesions, classified according to the Outerbridge system.

Methods

A systematic search was performed on four databases. Studies which involved HA as the primary management of FAI and reported on chondral lesions as classified according to the Outerbridge classification were included. The study was registered on PROSPERO. Demographic data, patient-reported outcome measures (PROMs), complications, and rates of conversion to total hip arthroplasty (THA) were collected.


Bone & Joint Research
Vol. 12, Issue 3 | Pages 179 - 188
7 Mar 2023
Itoh M Itou J Imai S Okazaki K Iwasaki K

Aims

Orthopaedic surgery requires grafts with sufficient mechanical strength. For this purpose, decellularized tissue is an available option that lacks the complications of autologous tissue. However, it is not widely used in orthopaedic surgeries. This study investigated clinical trials of the use of decellularized tissue grafts in orthopaedic surgery.

Methods

Using the ClinicalTrials.gov (CTG) and the International Clinical Trials Registry Platform (ICTRP) databases, we comprehensively surveyed clinical trials of decellularized tissue use in orthopaedic surgeries registered before 1 September 2022. We evaluated the clinical results, tissue processing methods, and commercial availability of the identified products using academic literature databases and manufacturers’ websites.


Bone & Joint Open
Vol. 4, Issue 2 | Pages 53 - 61
1 Feb 2023
Faraj S de Windt TS van Hooff ML van Hellemondt GG Spruit M

Aims

The aim of this study was to assess the clinical and radiological results of patients who were revised using a custom-made triflange acetabular component (CTAC) for component loosening and pelvic discontinuity (PD) after previous total hip arthroplasty (THA).

Methods

Data were extracted from a single centre prospective database of patients with PD who were treated with a CTAC. Patients were included if they had a follow-up of two years. The Hip Disability and Osteoarthritis Outcome Score (HOOS), modified Oxford Hip Score (mOHS), EurQol EuroQoL five-dimension three-level (EQ-5D-3L) utility, and Numeric Rating Scale (NRS), including visual analogue score (VAS) for pain, were gathered at baseline, and at one- and two-year follow-up. Reasons for revision, and radiological and clinical complications were registered. Trends over time are described and tested for significance and clinical relevance.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 80 - 90
20 Jan 2023
Xu J Si H Zeng Y Wu Y Zhang S Liu Y Li M Shen B

Aims

Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive.

Methods

Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 72 - 79
18 Jan 2023
Welling MM Warbroek K Khurshid C van Oosterom MN Rietbergen DDD de Boer MGJ Nelissen RGHH van Leeuwen FWB Pijls BG Buckle T

Aims

Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods.

Methods

99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 46 - 57
17 Jan 2023
Piñeiro-Ramil M Sanjurjo-Rodríguez C Rodríguez-Fernández S Hermida-Gómez T Blanco-García FJ Fuentes-Boquete I Vaamonde-García C Díaz-Prado S

Aims

After a few passages of in vitro culture, primary human articular chondrocytes undergo senescence and loss of their phenotype. Most of the available chondrocyte cell lines have been obtained from cartilage tissues different from diarthrodial joints, and their utility for osteoarthritis (OA) research is reduced. Thus, the goal of this research was the development of immortalized chondrocyte cell lines proceeded from the articular cartilage of patients with and without OA.

Methods

Using telomerase reverse transcriptase (hTERT) and SV40 large T antigen (SV40LT), we transduced primary OA articular chondrocytes. Proliferative capacity, degree of senescence, and chondrocyte surface antigen expression in transduced chondrocytes were evaluated. In addition, the capacity of transduced chondrocytes to synthesize a tissue similar to cartilage and to respond to interleukin (IL)-1β was assessed.


The Bone & Joint Journal
Vol. 104-B, Issue 11 | Pages 1234 - 1241
1 Nov 2022
Park JH Park KT Kim SC Bukhary HA Lee SM Yoo JC

Aims

This study compared patients who underwent arthroscopic repair of large to massive rotator cuff tears (LMRCTs) with isolated incomplete repair of the tear and patients with incomplete repair with biceps tendon augmentation. We aimed to evaluate the additional benefit on clinical outcomes and the capacity to lower the re-tear rate.

Methods

We retrospectively reviewed 1,115 patients who underwent arthroscopic rotator cuff repair for full-thickness tears between October 2011 and May 2019. From this series, we identified 77 patients (28 male, 49 female) with a mean age of 64.1 years (50 to 80). Patients were classified into groups A (n = 47 incomplete) and B (n = 30 with biceps augmentation) according to the nature of their reconstruction. Clinical scores were checked preoperatively and at six months, one year, and two years postoperatively. In preoperative MRI, we measured the tear size, the degree of fatty infiltration, and muscle volume ratio of the supraspinatus. In postoperative MRI, the integrity of the repaired rotator cuff tendon was assessed using the Sugaya classification. Tendon thickness at the footprint was evaluated on T2-weighted oblique coronal view.


Bone & Joint Research
Vol. 11, Issue 11 | Pages 787 - 802
1 Nov 2022
Sebastian S Tandberg F Liu Y Raina DB Tägil M Collin M Lidgren L

Aims

There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN).

Methods

The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites.


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


The Bone & Joint Journal
Vol. 104-B, Issue 9 | Pages 1095 - 1100
1 Sep 2022
McNally MA Ferguson JY Scarborough M Ramsden A Stubbs DA Atkins BL

Aims

Excision of chronic osteomyelitic bone creates a dead space which must be managed to avoid early recurrence of infection. Systemic antibiotics cannot penetrate this space in high concentrations, so local treatment has become an attractive adjunct to surgery. The aim of this study was to present the mid- to long-term results of local treatment with gentamicin in a bioabsorbable ceramic carrier.

Methods

A prospective series of 100 patients with Cierny-Mader Types III and IV chronic ostemyelitis, affecting 105 bones, were treated with a single-stage procedure including debridement, deep tissue sampling, local and systemic antibiotics, stabilization, and immediate skin closure. Chronic osteomyelitis was confirmed using strict diagnostic criteria. The mean follow-up was 6.05 years (4.2 to 8.4).


Bone & Joint Open
Vol. 3, Issue 7 | Pages 515 - 528
1 Jul 2022
van der Heijden L Bindt S Scorianz M Ng C Gibbons MCLH van de Sande MAJ Campanacci DA

Aims

Giant cell tumour of bone (GCTB) treatment changed since the introduction of denosumab from purely surgical towards a multidisciplinary approach, with recent concerns of higher recurrence rates after denosumab. We evaluated oncological, surgical, and functional outcomes for distal radius GCTB, with a critically appraised systematic literature review.

Methods

We included 76 patients with distal radius GCTB in three sarcoma centres (1990 to 2019). Median follow-up was 8.8 years (2 to 23). Seven patients underwent curettage, 38 curettage with adjuvants, and 31 resection; 20 had denosumab.


Bone & Joint Research
Vol. 11, Issue 6 | Pages 349 - 361
9 Jun 2022
Jun Z Yuping W Yanran H Ziming L Yuwan L Xizhong Z Zhilin W Xiaoji L

Aims. The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects. Methods. HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks. Results. In vitro, the HAAM scaffolds had a network structure and possessed abundant collagen. The HAAM scaffolds had good cytocompatibility, and hAMSCs grew well on the HAAM scaffolds. In vivo, the macroscopic scores of the HAAM + JCFs group were significantly higher than those of the other groups. In addition, histological assessments demonstrated that large amounts of hyaline-like cartilage formed in the osteochondral defects in the HAAM + JCFs group. Integration with surrounding normal cartilage and regeneration of subchondral bone in the HAAM + JCFs group were better than those in the other groups. Conclusion. HAAM scaffolds combined with JCFs promote the regenerative repair of osteochondral defects. Cite this article: Bone Joint Res 2022;11(6):349–361


Bone & Joint 360
Vol. 11, Issue 3 | Pages 9 - 11
1 Jun 2022
Foxall-Smith M


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 657 - 662
1 Jun 2022
Barlow T Coco V Shivji F Grassi A Asplin L Thompson P Metcalfe A Zaffagnini S Spalding T

Aims

Meniscal allograft transplantation (MAT) for patients with symptomatic meniscal loss has demonstrated good clinical results and survivorship. Factors that affect both functional outcome and survivorship have been reported in the literature. These are typically single-centre case series with relatively small numbers and conflicting results. Our aim was to describe an international, two-centre case series, and identify factors that affect both functional outcome and survival.

Methods

We report factors that affect outcome on 526 patients undergoing MAT across two sites (one in the UK and one in Italy). Outcomes of interest were the Knee injury and Osteoarthritis Outcome Score four (KOOS4) at two years and failure rates. We performed multiple regression analysis to examine for factors affecting KOOS, and Cox proportional hazards models for survivorship.


Bone & Joint Open
Vol. 3, Issue 5 | Pages 348 - 358
1 May 2022
Stokes S Drozda M Lee C

This review provides a concise outline of the advances made in the care of patients and to the quality of life after a traumatic spinal cord injury (SCI) over the last century. Despite these improvements reversal of the neurological injury is not yet possible. Instead, current treatment is limited to providing symptomatic relief, avoiding secondary insults and preventing additional sequelae. However, with an ever-advancing technology and deeper understanding of the damaged spinal cord, this appears increasingly conceivable. A brief synopsis of the most prominent challenges facing both clinicians and research scientists in developing functional treatments for a progressively complex injury are presented. Moreover, the multiple mechanisms by which damage propagates many months after the original injury requires a multifaceted approach to ameliorate the human spinal cord. We discuss potential methods to protect the spinal cord from damage, and to manipulate the inherent inhibition of the spinal cord to regeneration and repair. Although acute and chronic SCI share common final pathways resulting in cell death and neurological deficits, the underlying putative mechanisms of chronic SCI and the treatments are not covered in this review.


Bone & Joint Research
Vol. 11, Issue 1 | Pages 32 - 39
27 Jan 2022
Trousdale WH Limberg AK Reina N Salib CG Thaler R Dudakovic A Berry DJ Morrey ME Sanchez-Sotelo J van Wijnen A Abdel MP

Aims

Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release.

Methods

A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 3 - 5
1 Jan 2022
Rajasekaran RB Ashford R Stevenson JD Pollock R Rankin KS Patton JT Gupta S Cosker TDA


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1686 - 1694
1 Nov 2021
Yang H Kwak W Kang SJ Song E Seon J

Aims

To determine the relationship between articular cartilage status and clinical outcomes after medial opening-wedge high tibial osteotomy (MOHTO) for medial compartmental knee osteoarthritis at intermediate follow-up.

Methods

We reviewed 155 patients (155 knees) who underwent MOHTO from January 2008 to December 2016 followed by second-look arthroscopy with a mean 5.3-year follow-up (2.0 to 11.7). Arthroscopic findings were assessed according to the International Cartilage Repair Society (ICRS) Cartilage Repair Assessment (CRA) grading system. Patients were divided into two groups based on the presence of normal or nearly normal quality cartilage in the medial femoral condyle: good (second-look arthroscopic) status (ICRS grade I or II; n = 70), and poor (second-look arthroscopic) status (ICRS grade III or IV; n = 85) groups at the time of second-look arthroscopy. Clinical outcomes were assessed using the International Knee Documentation Committee (IKDC) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and 36-Item Short Form survey.


Bone & Joint Research
Vol. 10, Issue 11 | Pages 734 - 741
1 Nov 2021
Cheng B Wen Y Yang X Cheng S Liu L Chu X Ye J Liang C Yao Y Jia Y Zhang F

Aims. Despite the interest in the association of gut microbiota with bone health, limited population-based studies of gut microbiota and bone mineral density (BMD) have been made. Our aim is to explore the possible association between gut microbiota and BMD. Methods. A total of 3,321 independent loci of gut microbiota were used to calculate the individual polygenic risk score (PRS) for 114 gut microbiota-related traits. The individual genotype data were obtained from UK Biobank cohort. Linear regressions were then conducted to evaluate the possible association of gut microbiota with L1-L4 BMD (n = 4,070), total BMD (n = 4,056), and femur total BMD (n = 4,054), respectively. PLINK 2.0 was used to detect the single-nucleotide polymorphism (SNP) × gut microbiota interaction effect on the risks of L1-L4 BMD, total BMD, and femur total BMD, respectively. Results. We detected five, three, and seven candidate gut microbiota-related traits for L1-L4 BMD, total BMD, and femur BMD, respectively, such as genus Dialister (p = 0.004) for L1-L4 BMD, and genus Eisenbergiella (p = 0.046) for total BMD. We also detected two common gut microbiota-related traits shared by L1-L4 BMD, total BMD, and femur total BMD, including genus Escherichia Shigella and genus Lactococcus. Interaction analysis of BMD detected several genes that interacted with gut microbiota, such as phospholipase D1 (PLD1) and endomucin (EMCN) interacting with genus Dialister in total BMD, and COL12A1 and Discs Large MAGUK Scaffold Protein 2 (DLG2) interacting with genus Lactococcus in femur BMD. Conclusion. Our results suggest associations between gut microbiota and BMD, which will be helpful to further explore the regulation mechanism and intervention gut microbiota of BMD. Cite this article: Bone Joint Res 2021;10(11):734–741


Bone & Joint Research
Vol. 10, Issue 10 | Pages 677 - 689
1 Oct 2021
Tamaddon M Blunn G Xu W Alemán Domínguez ME Monzón M Donaldson J Skinner J Arnett TR Wang L Liu C

Aims. Minimally manipulated cells, such as autologous bone marrow concentrates (BMC), have been investigated in orthopaedics as both a primary therapeutic and augmentation to existing restoration procedures. However, the efficacy of BMC in combination with tissue engineering is still unclear. In this study, we aimed to determine whether the addition of BMC to an osteochondral scaffold is safe and can improve the repair of large osteochondral defects when compared to the scaffold alone. Methods. The ovine femoral condyle model was used. Bone marrow was aspirated, concentrated, and used intraoperatively with a collagen/hydroxyapatite scaffold to fill the osteochondral defects (n = 6). Tissue regeneration was then assessed versus the scaffold-only group (n = 6). Histological staining of cartilage with alcian blue and safranin-O, changes in chondrogenic gene expression, microCT, peripheral quantitative CT (pQCT), and force-plate gait analyses were performed. Lymph nodes and blood were analyzed for safety. Results. The results six months postoperatively showed that there were no significant differences in bone regrowth and mineral density between BMC-treated animals and controls. A significant upregulation of messenger RNA (mRNA) for types I and II collagens in the BMC group was observed, but there were no differences in the formation of hyaline-like cartilage between the groups. A trend towards reduced sulphated glycosaminoglycans (sGAG) breakdown was detected in the BMC group but this was not statistically significant. Functional weightbearing was not affected by the inclusion of BMC. Conclusion. Our results indicated that the addition of BMC to scaffold is safe and has some potentially beneficial effects on osteochondral-tissue regeneration, but not on the functional endpoint of orthopaedic interest. Cite this article: Bone Joint Res 2021;10(10):677–689


The Bone & Joint Journal
Vol. 103-B, Issue 10 | Pages 1619 - 1626
1 Oct 2021
Bi M Zhou K Gan K Ding W Zhang T Ding S Li J

Aims

The aim of this study is to provide a detailed description of cases combining bridging patch repair with artificial ligament “internal brace” reinforcement to treat irreparable massive rotator cuff tears, and report the preliminary results.

Methods

This is a retrospective review of patients with irreparable massive rotator cuff tears undergoing fascia lata autograft bridging repair with artificial ligament “internal brace” reinforcement technique between January 2017 and May 2018. Inclusion criteria were: patients treated arthroscopically for an incompletely reparable massive rotator cuff tear (dimension > 5 cm or two tendons fully torn), stage 0 to 4 supraspinatus fatty degeneration on MRI according to the Goutallier grading system, and an intact or reparable infraspinatus and/or subscapularis tendon of radiological classification Hamada 0 to 4. The surgical technique comprised two components: first, superior capsular reconstruction using an artificial ligament as an “internal brace” protective device for a fascia lata patch. The second was fascia lata autograft bridging repair for the torn supraspinatus. In all, 26 patients with a mean age 63.4 years (SD 6.2) were included.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 411 - 424
14 Jul 2021
Zhao D Ren B Wang H Zhang X Yu M Cheng L Sang Y Cao S Thieringer FM Zhang D Wan Y Liu C

Aims

The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration.

Methods

IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 388 - 400
8 Jul 2021
Dall’Ava L Hothi H Henckel J Di Laura A Tirabosco R Eskelinen A Skinner J Hart A

Aims

The main advantage of 3D-printed, off-the-shelf acetabular implants is the potential to promote enhanced bony fixation due to their controllable porous structure. In this study we investigated the extent of osseointegration in retrieved 3D-printed acetabular implants.

Methods

We compared two groups, one made via 3D-printing (n = 7) and the other using conventional techniques (n = 7). We collected implant details, type of surgery and removal technique, patient demographics, and clinical history. Bone integration was assessed by macroscopic visual analysis, followed by sectioning to allow undecalcified histology on eight sections (~200 µm) for each implant. The outcome measures considered were area of bone attachment (%), extent of bone ingrowth (%), bone-implant contact (%), and depth of ingrowth (%), and these were quantified using a line-intercept method.


The Bone & Joint Journal
Vol. 103-B, Issue 7 Supple B | Pages 135 - 144
1 Jul 2021
Kuyl E Shu F Sosa BR Lopez JD Qin D Pannellini T Ivashkiv LB Greenblatt MB Bostrom MPG Yang X

Aims

Aseptic loosening is a leading cause of uncemented arthroplasty failure, often accompanied by fibrotic tissue at the bone-implant interface. A biological target, neutrophil extracellular traps (NETs), was investigated as a crucial connection between the innate immune system’s response to injury, fibrotic tissue development, and proper bone healing. Prevalence of NETs in peri-implant fibrotic tissue from aseptic loosening patients was assessed. A murine model of osseointegration failure was used to test the hypothesis that inhibition (through Pad4-/- mice that display defects in peptidyl arginine deiminase 4 (PAD4), an essential protein required for NETs) or resolution (via DNase 1 treatment, an enzyme that degrades the cytotoxic DNA matrix) of NETs can prevent osseointegration failure and formation of peri-implant fibrotic tissue.

Methods

Patient peri-implant fibrotic tissue was analyzed for NETs biomarkers. To enhance osseointegration in loose implant conditions, an innate immune system pathway (NETs) was either inhibited (Pad4-/- mice) or resolved with a pharmacological agent (DNase 1) in a murine model of osseointegration failure.


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1189 - 1196
1 Jul 2021
Murray IR Makaram NS Rodeo SA Safran MR Sherman SL McAdams TR Murray AD Haddad FS Abrams GD

Aims

The aim of this study was to prepare a scoping review to investigate the use of biologic therapies in the treatment of musculoskeletal injuries in professional and Olympic athletes.

Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews and Arksey and O’Malley frameworks were followed. A three-step search strategy identified relevant published primary and secondary studies, as well as grey literature. The identified studies were screened with criteria for inclusion comprising clinical studies evaluating the use of biologic therapies in professional and Olympic athletes, systematic reviews, consensus statements, and conference proceedings. Data were extracted using a standardized tool to form a descriptive analysis and a thematic summary.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 370 - 379
30 Jun 2021
Binder H Hoffman L Zak L Tiefenboeck T Aldrian S Albrecht C

Aims

The aim of this retrospective study was to determine if there are differences in short-term clinical outcomes among four different types of matrix-associated autologous chondrocyte transplantation (MACT).

Methods

A total of 88 patients (mean age 34 years (SD 10.03), mean BMI 25 kg/m2 (SD 3.51)) with full-thickness chondral lesions of the tibiofemoral joint who underwent MACT were included in this study. Clinical examinations were performed preoperatively and 24 months after transplantation. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC) Subjective Knee Form, the Brittberg score, the Tegner Activity Scale, and the visual analogue scale (VAS) for pain. The Kruskal-Wallis test by ranks was used to compare the clinical scores of the different transplant types.


Bone & Joint Research
Vol. 10, Issue 4 | Pages 269 - 276
1 Apr 2021
Matsubara N Nakasa T Ishikawa M Tamura T Adachi N

Aims

Meniscal injuries are common and often induce knee pain requiring surgical intervention. To develop effective strategies for meniscus regeneration, we hypothesized that a minced meniscus embedded in an atelocollagen gel, a firm gel-like material, may enhance meniscus regeneration through cell migration and proliferation in the gel. Hence, the objective of this study was to investigate cell migration and proliferation in atelocollagen gels seeded with autologous meniscus fragments in vitro and examine the therapeutic potential of this combination in an in vivo rabbit model of massive meniscus defect.

Methods

A total of 34 Japanese white rabbits (divided into defect and atelocollagen groups) were used to produce the massive meniscus defect model through a medial patellar approach. Cell migration and proliferation were evaluated using immunohistochemistry. Furthermore, histological evaluation of the sections was performed, and a modified Pauli’s scoring system was used for the quantitative evaluation of the regenerated meniscus.


Bone & Joint Research
Vol. 10, Issue 3 | Pages 192 - 202
1 Mar 2021
Slimi F Zribi W Trigui M Amri R Gouiaa N Abid C Rebai MA Boudawara T Jebahi S Keskes H

Aims

The present study investigates the effectiveness of platelet-rich plasma (PRP) gel without adjunct to induce cartilage regeneration in large osteochondral defects in a rabbit model.

Methods

A bilateral osteochondral defect was created in the femoral trochlear groove of 14 New Zealand white rabbits. The right knees were filled with PRP gel and the contralateral knees remained untreated and served as control sides. Some animals were killed at week 3 and others at week 12 postoperatively. The joints were harvested and assessed by Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) MRI scoring system, and examined using the International Cartilage Repair Society (ICRS) macroscopic and ICRS histological scoring systems. Additionally, the collagen type II content was evaluated by the immunohistochemical staining.


Bone & Joint 360
Vol. 10, Issue 1 | Pages 19 - 24
1 Feb 2021


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 207 - 212
1 Feb 2021
Hurley ET Stewart SK Kennedy JG Strauss EJ Calder J Ramasamy A

The management of symptomatic osteochondral lesions of the talus (OLTs) can be challenging. The number of ways of treating these lesions has increased considerably during the last decade, with published studies often providing conflicting, low-level evidence. This paper aims to present an up-to-date concise overview of the best evidence for the surgical treatment of OLTs. Management options are reviewed based on the size of the lesion and include bone marrow stimulation, bone grafting options, drilling techniques, biological preparations, and resurfacing. Although many of these techniques have shown promising results, there remains little high level evidence, and further large scale prospective studies and systematic reviews will be required to identify the optimal form of treatment for these lesions.

Cite this article: Bone Joint J 2021;103-B(2):207–212.


Bone & Joint Research
Vol. 9, Issue 12 | Pages 857 - 869
1 Dec 2020
Slullitel PA Coutu D Buttaro MA Beaule PE Grammatopoulos G

As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells.

Cite this article: Bone Joint Res 2020;9(12):857–869.


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1723 - 1734
1 Dec 2020
Fung B Hoit G Schemitsch E Godbout C Nauth A

Aims

The purpose of this study was to: review the efficacy of the induced membrane technique (IMT), also known as the Masquelet technique; and investigate the relationship between patient factors and technique variations on the outcomes of the IMT.

Methods

A systematic search was performed in CINAHL, The Cochrane Library, Embase, Ovid MEDLINE, and PubMed. We included articles from 1 January 1980 to 30 September 2019. Studies with a minimum sample size of five cases, where the IMT was performed primarily in adult patients (≥ 18 years old), in a long bone were included. Multivariate regression models were performed on patient-level data to determine variables associated with nonunion, postoperative infection, and the need for additional procedures.


Bone & Joint Open
Vol. 1, Issue 11 | Pages 715 - 719
12 Nov 2020
Makaram NS Murray IR Rodeo SA Sherman SL Murray AD Haddad FS McAdams TR Abrams GD

Aims

The use of biologics in the treatment of musculoskeletal injuries in Olympic and professional athletes appears to be increasing. There are no studies which currently map the extent, range, and nature of existing literature concerning the use and efficacy of such therapies in this arena. The objective of this scoping review is to map the available evidence regarding the use of biologics in the treatment of musculoskeletal injuries in Olympic and professional sport.

Methods

Best-practice methodological frameworks suggested by Arksey and O’Malley, Levac et al, and the Joanna Briggs Institute will be used. This scoping review will aim to firstly map the current extent, range, and nature of evidence for biologic strategies to treat injuries in professional and Olympic sport; secondly, to summarize and disseminate existing research findings; and thirdly, to identify gaps in existing literature. A three-step search strategy will identify peer reviewed and non-peer reviewed literature, including reviews, original research, and both published and unpublished (‘grey’) literature. An initial limited search will identify suitable search terms, followed by a search of five electronic databases (MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Web of Science, and Google Scholar) using keyword and index terms. Studies will be screened independently by two reviewers for final inclusion.


Bone & Joint Open
Vol. 1, Issue 10 | Pages 628 - 638
6 Oct 2020
Mott A Mitchell A McDaid C Harden M Grupping R Dean A Byrne A Doherty L Sharma H

Aims

Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing.

Methods

The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series.


Bone & Joint 360
Vol. 9, Issue 5 | Pages 41 - 43
1 Oct 2020


Bone & Joint Research
Vol. 9, Issue 10 | Pages 667 - 674
1 Oct 2020
Antich-Rosselló M Forteza-Genestra MA Calvo J Gayà A Monjo M Ramis JM

Aims

Platelet concentrates, like platelet-rich plasma (PRP) and platelet lysate (PL), are widely used in regenerative medicine, especially in bone regeneration. However, the lack of standard procedures and controls leads to high variability in the obtained results, limiting their regular clinical use. Here, we propose the use of platelet-derived extracellular vesicles (EVs) as an off-the-shelf alternative for PRP and PL for bone regeneration. In this article, we evaluate the effect of PL-derived EVs on the biocompatibility and differentiation of mesenchymal stromal cells (MSCs).

Methods

EVs were obtained first by ultracentrifugation (UC) and then by size exclusion chromatography (SEC) from non-activated PL. EVs were characterized by transmission electron microscopy, nanoparticle tracking analysis, and the expression of CD9 and CD63 markers by western blot. The effect of the obtained EVs on osteoinduction was evaluated in vitro on human umbilical cord MSCs by messenger RNA (mRNA) expression analysis of bone markers, alkaline phosphatase activity (ALP), and calcium (Ca2+) content.


Bone & Joint 360
Vol. 9, Issue 5 | Pages 22 - 24
1 Oct 2020


Bone & Joint 360
Vol. 9, Issue 5 | Pages 4 - 9
1 Oct 2020
Matthews E Waterson HB Phillips JR Toms AD


Bone & Joint Research
Vol. 9, Issue 9 | Pages 601 - 612
1 Sep 2020
Rajagopal K Ramesh S Walter NM Arora A Katti DS Madhuri V

Aims. Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold. Methods. Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining. Results. In vitro testing showed that the secreted ECM oriented itself along the fibre in multi-layered scaffolds. Both types of CG scaffolds supported cell viability, growth, and matrix synthesis. In vitro chondrogenesis on scaffold showed an around 400-fold increase in collagen type 2 (COL2A1) expression in both CG scaffolds, but the total glycosaminoglycan (GAG)/DNA deposition was 1.39-fold higher in the multi-layered scaffold than the randomly aligned scaffold. In vivo cartilage formation occurred in both multi-layered and randomly aligned scaffolds treated with and without cells, and was shown to be of hyaline phenotype on immunostaining. The defects treated with multi-layered + cells, however, showed significantly thicker cartilage formation than the randomly aligned scaffold. Conclusion. We demonstrated that MSCs loaded CG scaffold with multi-layered zonal architecture promoted superior hyaline AC regeneration. Cite this article: Bone Joint Res 2020;9(9):601–612


Bone & Joint Research
Vol. 9, Issue 9 | Pages 543 - 553
1 Sep 2020
Bakirci E Tschan K May RD Ahmad SS Kleer B Gantenbein B

Aims

The anterior cruciate ligament (ACL) is known to have a poor wound healing capacity, whereas other ligaments outside of the knee joint capsule such as the medial collateral ligament (MCL) apparently heal more easily. Plasmin has been identified as a major component in the synovial fluid that varies among patients. The aim of this study was to test whether plasmin, a component of synovial fluid, could be a main factor responsible for the poor wound healing capacity of the ACL.

Methods

The effects of increasing concentrations of plasmin (0, 0.1, 1, 10, and 50 µg/ml) onto the wound closing speed (WCS) of primary ACL-derived ligamentocytes (ACL-LCs) were tested using wound scratch assay and time-lapse phase-contrast microscopy. Additionally, relative expression changes (quantitative PCR (qPCR)) of major LC-relevant genes and catabolic genes were investigated. The positive controls were 10% fetal calf serum (FCS) and platelet-derived growth factor (PDGF).


Bone & Joint Research
Vol. 9, Issue 7 | Pages 402 - 411
1 Aug 2020
Sanghani-Kerai A Coathup M Brown R Lodge G Osagie-Clouard L Graney I Skinner J Gikas P Blunn G

Aims

For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient’s own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel.

Methods

The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 394 - 401
1 Jul 2020
Blirup-Plum SA Bjarnsholt T Jensen HE Kragh KN Aalbæk B Gottlieb H Bue M Jensen LK

Aims

CERAMENT|G is an absorbable gentamicin-loaded biocomposite used as an on-site vehicle of antimicrobials for the treatment of chronic osteomyelitis. The purpose of the present study was to investigate the sole effect of CERAMENT|G, i.e. without additional systemic antimicrobial therapy, in relation to a limited or extensive debridement of osteomyelitis lesions in a porcine model.

Methods

Osteomyelitis was induced in nine pigs by inoculation of 104 colony-forming units (CFUs) of Staphylococcus aureus into a drill hole in the right tibia. After one week, the pigs were allocated into three groups. Group A (n = 3) received no treatment during the study period (19 days). Groups B (n = 3) and C (n = 3) received limited or extensive debridement seven days postinoculation, respectively, followed by injection of CERAMENT|G into the bone voids. The pigs were euthanized ten (Group C) and 12 (Group B) days after the intervention.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 412 - 420
1 Jul 2020
Hefka Blahnova V Dankova J Rampichova M Filova E

Aims

Here we introduce a wide and complex study comparing effects of growth factors used alone and in combinations on human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation. Certain ways of cell behaviour can be triggered by specific peptides – growth factors, influencing cell fate through surface cellular receptors.

Methods

In our study transforming growth factor β (TGF-β), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) were used in order to induce osteogenesis and proliferation of hMSCs from bone marrow. These cells are naturally able to differentiate into various mesodermal cell lines. Effect of each factor itself is pretty well known. We designed experimental groups where two and more growth factors were combined. We supposed cumulative effect would appear when more growth factors with the same effect were combined. The cellular metabolism was evaluated using MTS assay and double-stranded DNA (dsDNA) amount using PicoGreen assay. Alkaline phosphatase (ALP) activity, as early osteogenesis marker, was observed. Phase contrast microscopy was used for cell morphology evaluation.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 351 - 359
1 Jul 2020
Fitzgerald J

The ability to edit DNA at the nucleotide level using clustered regularly interspaced short palindromic repeats (CRISPR) systems is a relatively new investigative tool that is revolutionizing the analysis of many aspects of human health and disease, including orthopaedic disease. CRISPR, adapted for mammalian cell genome editing from a bacterial defence system, has been shown to be a flexible, programmable, scalable, and easy-to-use gene editing tool. Recent improvements increase the functionality of CRISPR through the engineering of specific elements of CRISPR systems, the discovery of new, naturally occurring CRISPR molecules, and modifications that take CRISPR beyond gene editing to the regulation of gene transcription and the manipulation of RNA. Here, the basics of CRISPR genome editing will be reviewed, including a description of how it has transformed some aspects of molecular musculoskeletal research, and will conclude by speculating what the future holds for the use of CRISPR-related treatments and therapies in clinical orthopaedic practice.

Cite this article: Bone Joint Res 2020;9(7):351–359.


The Bone & Joint Journal
Vol. 102-B, Issue 6 Supple A | Pages 158 - 162
1 Jun 2020
Griseti Q Jacquet C Sautet P Abdel MP Parratte S Ollivier M Argenson J

Aims

The aim of this study was to compare the ability of tantalum, 3D porous titanium, antibiotic-loaded bone cement, and smooth titanium alloy to inhibit staphylococci in an in vitro environment, based on the evaluation of the zone of inhibition (ZOI). The hypothesis was that there would be no significant difference in the inhibition of methicillin-sensitive or methicillin-resistant Staphylococcus aureus (MSSA/MRSA) between the two groups.

Methods

A total of 30 beads made of three different materials (tantalum/3D porous titanium and smooth titanium alloy) were bathed for one hour in a solution of 1 g vancomycin in 20 ml of sterile water for injection (bath concentration: 50 mg/mL). Ten 1 cm3 cylinders of antibiotic-loaded cement were also created by mixing standard surgical cement with 1 g of vancomycin in standardized sterile moulds. The cylinders were then placed on agar plates inoculated with MSSA and MRSA. The ZOIs were measured each day and the cylinders were transferred onto a new inoculated plate.


Bone & Joint Research
Vol. 9, Issue 6 | Pages 293 - 301
1 Jun 2020
Hexter AT Hing KA Haddad FS Blunn G

Aims

To evaluate graft healing of decellularized porcine superflexor tendon (pSFT) xenograft in an ovine anterior cruciate ligament (ACL) reconstruction model using two femoral fixation devices. Also, to determine if pSFT allows functional recovery of gait as compared with the preoperative measurements.

Methods

A total of 12 sheep underwent unilateral single-bundle ACL reconstruction using pSFT. Two femoral fixation devices were investigated: Group 1 (n = 6) used cortical suspensory fixation (Endobutton CL) and Group 2 (n = 6) used cross-pin fixation (Stratis ST). A soft screw was used for tibial fixation. Functional recovery was quantified using force plate analysis at weeks 5, 8, and 11. The sheep were euthanized after 12 weeks and comprehensive histological analysis characterized graft healing at the graft-bone interface and the intra-articular graft (ligamentization).


Bone & Joint 360
Vol. 8, Issue 6 | Pages 39 - 41
1 Dec 2019


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1557 - 1562
1 Dec 2019
Tillman R Tsuda Y Puthiya Veettil M Young PS Sree D Fujiwara T Abudu A

Aims

The aim of this study was to present the long-term surgical outcomes, complications, implant survival, and causes of implant failure in patients treated with the modified Harrington procedure using antegrade large diameter pins.

Patients and Methods

A cohort of 50 consecutive patients who underwent the modified Harrington procedure for periacetabular metastasis or haematological malignancy between January 1996 and April 2018 were studied. The median follow-up time for all survivors was 3.2 years (interquartile range 0.9 to 7.6 years).


Bone & Joint Research
Vol. 8, Issue 11 | Pages 518 - 525
1 Nov 2019
Whitaker S Edwards JH Guy S Ingham E Herbert A

Objectives

This study investigated the biomechanical performance of decellularized porcine superflexor tendon (pSFT) grafts of varying diameters when utilized in conjunction with contemporary ACL graft fixation systems. This aimed to produce a range of ‘off-the-shelf’ products with predictable mechanical performance, depending on the individual requirements of the patient.

Methods

Decellularized pSFTs were prepared to create double-bundle grafts of 7 mm, 8 mm, and 9 mm diameter. Femoral and tibial fixation systems were simulated utilizing Arthrex suspension devices and interference screws in bovine bone, respectively. Dynamic stiffness and creep were measured, followed by ramp to failure from which linear stiffness and load at failure were measured. The mechanisms of failure were also recorded.


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1186 - 1191
1 Oct 2019
Amstutz HC Le Duff MJ

Aims

In previous studies, we identified multiple factors influencing the survivorship of hip resurfacing arthroplasties (HRAs), such as initial anatomical conditions and surgical technique. In addition, the University of California, Los Angeles (UCLA) activity score presents a ceiling effect, so a better quantification of activity is important to determine which activities may be advisable or detrimental to the recovered patient. We aimed to determine the effect of specific groups of sporting activities on the survivorship free of aseptic failure of a large series of HRA.

Patients and Methods

A total of 661 patients (806 hips) representing 77% of a consecutive series of patients treated with metal-on-metal hybrid HRA answered a survey to determine the types and amounts of sporting activities they regularly participated in. There were 462 male patients (70%) and 199 female patients (30%). Their mean age at the time of surgery was 51.9 years (14 to 78). Their mean body mass index (BMI) was 26.5 kg/m2 (16.7 to 46.5). Activities were regrouped into 17 categories based on general analogies between these activities. Scores for typical frequency and duration of the sessions were used to quantify the patients’ overall time spent engaging in sporting activities. Impact and cycle scores were computed. Multivariable models were used.


The Bone & Joint Journal
Vol. 101-B, Issue 10 | Pages 1238 - 1247
1 Oct 2019
Soreide E Denbeigh JM Lewallen EA Thaler R Xu W Berglund L Yao JJ Martinez A Nordsletten L van Wijnen AJ Kakar S

Aims

Options for the treatment of intra-articular ligament injuries are limited, and insufficient ligament reconstruction can cause painful joint instability, loss of function, and progressive development of degenerative arthritis. This study aimed to assess the capability of a biologically enhanced matrix material for ligament reconstruction to withstand tensile forces within the joint and enhance ligament regeneration needed to regain joint function.

Materials and Methods

A total of 18 New Zealand rabbits underwent bilateral anterior cruciate ligament reconstruction by autograft, FiberTape, or FiberTape-augmented autograft. Primary outcomes were biomechanical assessment (n = 17), microCT (µCT) assessment (n = 12), histological evaluation (n = 12), and quantitative polymerase chain reaction (qPCR) analysis (n = 6).


Bone & Joint 360
Vol. 8, Issue 5 | Pages 16 - 19
1 Oct 2019


Bone & Joint Research
Vol. 8, Issue 10 | Pages 469 - 471
1 Oct 2019
Evans CH


Bone & Joint Research
Vol. 8, Issue 9 | Pages 414 - 424
2 Sep 2019
Schmalzl J Plumhoff P Gilbert F Gohlke F Konrads C Brunner U Jakob F Ebert R Steinert AF

Objectives

The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration.

Methods

In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions.


The Bone & Joint Journal
Vol. 101-B, Issue 7 | Pages 824 - 831
1 Jul 2019
Mahmoud EE Adachi N Mawas AS Deie M Ochi M

Aim

Mesenchymal stem cells (MSCs) have several properties that may support their use as an early treatment option for osteoarthritis (OA). This study investigated the role of multiple injections of allogeneic bone marrow-derived stem cells (BMSCs) to alleviate the progression of osteoarthritic changes in the various structures of the mature rabbit knee in an anterior cruciate ligament (ACL)-deficient OA model.

Materials and Methods

Two months after bilateral section of the ACL of Japanese white rabbits aged nine months or more, either phosphate buffered saline (PBS) or 1 x 106 MSCs were injected into the knee joint in single or three consecutive doses. After two months, the articular cartilage and meniscus were assessed macroscopically, histologically, and immunohistochemically using collagen I and II.


Bone & Joint Research
Vol. 8, Issue 7 | Pages 333 - 341
1 Jul 2019
Grossner TL Haberkorn U Gotterbarm T

Objectives. Bone tissue engineering is one of the fastest growing branches in modern bioscience. New methods are being developed to achieve higher grades of mineral deposition by osteogenically inducted mesenchymal stem cells. In addition to well established monolayer cell culture models, 3D cell cultures for stem cell-based osteogenic differentiation have become increasingly attractive to promote in vivo bone formation. One of the main problems of scaffold-based osteogenic cell cultures is the difficulty in quantifying the amount of newly produced extracellular mineral deposition, as a marker for new bone formation, without destroying the scaffold. In recent studies, we were able to show that . 99m. Tc-methylene diphosphonate (. 99m. Tc-MDP), a gamma radiation-emitting radionuclide, can successfully be applied as a reliable quantitative marker for mineral deposition as this tracer binds with high affinity to newly produced hydroxyapatite (HA). Methods. Within the present study, we evaluated whether this promising new method, using . 99m. Tc-hydroxydiphosphonate (. 99m. Tc-HDP), can be used to quantify the amount of newly formed extracellular HA in a 3D cell culture model. Highly porous collagen type II scaffolds were seeded with 1 × 106 human mesenchymal stem cells (hMSCs; n = 6) and cultured for 21 days in osteogenic media (group A – osteogenic (OSM) group) and in parallel in standard media (group B – negative control (CNTRL) group). After incubation with . 99m. Tc-HDP, the tracer uptake, reflected by the amount of emitted gamma counts, was measured. Results. We saw a higher uptake (up to 15-fold) of the tracer in the OSM group A compared with the CNTRL group B. Statistical analysis of the results (Student`s t-test) revealed a significantly higher amount of emitted gamma counts in the OSM group (p = 0.048). Qualitative and semi-quantitative analysis by Alizarin Red staining confirmed the presence of extracellular HA deposition in the OSM group. Conclusion. Our data indicate that . 99m. Tc-HDP labelling is a promising tool to track and quantify non-destructive local HA deposition in 3D stem cell cultures. Cite this article: T. L. Grossner, U. Haberkorn, T. Gotterbarm. . 99m. Tc-Hydroxydiphosphonate quantification of extracellular matrix mineralization in 3D human mesenchymal stem cell cultures. Bone Joint Res 2019;8:333–341. doi: 10.1302/2046-3758.87.BJR-2017-0248.R1


Bone & Joint Research
Vol. 8, Issue 6 | Pages 224 - 225
1 Jun 2019
Wilkinson JM


Objectives

Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo.

Methods

ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry.


Objectives

Platelet-rich fibrin matrix (PRFM) has been proved to enhance tenocyte proliferation but has mixed results when used during rotator cuff repair. The optimal PRFM preparation protocol should be determined before clinical application. To screen the best PRFM to each individual’s tenocytes effectively, small-diameter culture wells should be used to increase variables. The gelling effect of PRFM will occur when small-diameter culture wells are used. A co-culture device should be designed to avoid this effect.

Methods

Tenocytes harvested during rotator cuff repair and blood from a healthy volunteer were used. Tenocytes were seeded in 96-, 24-, 12-, and six-well plates and co-culture devices. Appropriate volumes of PRFM, according to the surface area of each culture well, were treated with tenocytes for seven days. The co-culture device was designed to avoid the gelling effect that occurred in the small-diameter culture well. Cell proliferation was analyzed by water soluble tetrazolium-1 (WST-1) bioassay.


Bone & Joint Research
Vol. 8, Issue 3 | Pages 107 - 117
1 Mar 2019
Lim ZXH Rai B Tan TC Ramruttun AK Hui JH Nurcombe V Teoh SH Cool SM

Objectives

Long bone defects often require surgical intervention for functional restoration. The ‘gold standard’ treatment is autologous bone graft (ABG), usually from the patient’s iliac crest. However, autograft is plagued by complications including limited supply, donor site morbidity, and the need for an additional surgery. Thus, alternative therapies are being actively investigated. Autologous bone marrow (BM) is considered as a candidate due to the presence of both endogenous reparative cells and growth factors. We aimed to compare the therapeutic potentials of autologous bone marrow aspirate (BMA) and ABG, which has not previously been done.

Methods

We compared the efficacy of coagulated autologous BMA and ABG for the repair of ulnar defects in New Zealand White rabbits. Segmental defects (14 mm) were filled with autologous clotted BM or morcellized autograft, and healing was assessed four and 12 weeks postoperatively. Harvested ulnas were subjected to radiological, micro-CT, histological, and mechanical analyses.


Bone & Joint Research
Vol. 8, Issue 2 | Pages 73 - 80
1 Feb 2019
Zhang J Hao X Yin M Xu T Guo F

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with limited coding potential, which have emerged as novel regulators in many biological and pathological processes, including growth, development, and oncogenesis. Accumulating evidence suggests that lncRNAs have a special role in the osteogenic differentiation of various types of cell, including stem cells from different sources such as embryo, bone marrow, adipose tissue and periodontal ligaments, and induced pluripotent stem cells. Involved in complex mechanisms, lncRNAs regulate osteogenic markers and key regulators and pathways in osteogenic differentiation. In this review, we provide insights into the functions and molecular mechanisms of lncRNAs in osteogenesis and highlight their emerging roles and clinical value in regenerative medicine and osteogenesis-related diseases.

Cite this article: J. Zhang, X. Hao, M. Yin, T. Xu, F. Guo. Long non-coding RNA in osteogenesis: A new world to be explored. Bone Joint Res 2019;8:73–80. DOI: 10.1302/2046-3758.82.BJR-2018-0074.R1.


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 170 - 177
1 Feb 2019
Puri A Gulia A Hegde P Verma V Rekhi B

Aims

The aims of this study were to evaluate the efficacy of preoperative denosumab in achieving prospectively decided intention of therapy in operable giant cell tumour of bone (GCTB) patients, and to document local recurrence-free survival (LRFS).

Patients and Methods

A total of 44 patients received preoperative denosumab: 22 to facilitate curettage, 16 to facilitate resection, and six with intent of converting resection to curettage. There were 26 male and 18 female patients. The mean age was 27 years (13 to 47).


Bone & Joint Research
Vol. 8, Issue 2 | Pages 101 - 106
1 Feb 2019
Filardo G Petretta M Cavallo C Roseti L Durante S Albisinni U Grigolo B

Objectives. Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology. Methods. A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability. Results. This study involved the realization of a human cell-laden collagen meniscus using 3D bioprinting. The meniscus prototype showed the biological potential of this technology to provide an anatomically shaped, patient-specific construct with viable cells on a biocompatible material. Conclusion. This paper reports the preliminary findings of the production of a custom-made, cell-laden, collagen-based human meniscus. The prototype described could act as the starting point for future developments of this collagen-based, tissue-engineered structure, which could aid the optimization of implants designed to replace damaged menisci. Cite this article: G. Filardo, M. Petretta, C. Cavallo, L. Roseti, S. Durante, U. Albisinni, B. Grigolo. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. Bone Joint Res 2019;8:101–106. DOI: 10.1302/2046-3758.82.BJR-2018-0134.R1


Bone & Joint Research
Vol. 7, Issue 11 | Pages 587 - 594
1 Nov 2018
Zhang R Li G Zeng C Lin C Huang L Huang G Zhao C Feng S Fang H

Objectives

The role of mechanical stress and transforming growth factor beta 1 (TGF-β1) is important in the initiation and progression of osteoarthritis (OA). However, the underlying molecular mechanisms are not clearly known.

Methods

In this study, TGF-β1 from osteoclasts and knee joints were analyzed using a co-cultured cell model and an OA rat model, respectively. Five patients with a femoral neck fracture (four female and one male, mean 73.4 years (68 to 79)) were recruited between January 2015 and December 2015. Results showed that TGF-β1 was significantly upregulated in osteoclasts by cyclic loading in a time- and dose-dependent mode. The osteoclasts were subjected to cyclic loading before being co-cultured with chondrocytes for 24 hours.


Bone & Joint Research
Vol. 7, Issue 10 | Pages 548 - 560
1 Oct 2018
Qayoom I Raina DB Širka A Tarasevičius Š Tägil M Kumar A Lidgren L

During the last decades, several research groups have used bisphosphonates for local application to counteract secondary bone resorption after bone grafting, to improve implant fixation or to control bone resorption caused by bone morphogenetic proteins (BMPs). We focused on zoledronate (a bisphosphonate) due to its greater antiresorptive potential over other bisphosphonates. Recently, it has become obvious that the carrier is of importance to modulate the concentration and elution profile of the zoledronic acid locally. Incorporating one fifth of the recommended systemic dose of zoledronate with different apatite matrices and types of bone defects has been shown to enhance bone regeneration significantly in vivo. We expect the local delivery of zoledronate to overcome the limitations and side effects associated with systemic usage; however, we need to know more about the bioavailability and the biological effects. The local use of BMP-2 and zoledronate as a combination has a proven additional effect on bone regeneration. This review focuses primarily on the local use of zoledronate alone, or in combination with bone anabolic factors, in various preclinical models mimicking different orthopaedic conditions.

Cite this article: I. Qayoom, D. B. Raina, A. Širka, Š. Tarasevičius, M. Tägil, A. Kumar, L. Lidgren. Anabolic and antiresorptive actions of locally delivered bisphosphonates for bone repair: A review. Bone Joint Res 2018;7:548–560. DOI: 10.1302/2046-3758.710.BJR-2018-0015.R2.


Bone & Joint Research
Vol. 7, Issue 5 | Pages 336 - 342
1 May 2018
Hotham WE Malviya A

This systematic review examines the current literature regarding surgical techniques for restoring articular cartilage in the hip, from the older microfracture techniques involving perforation to the subchondral bone, to adaptations of this technique using nanofractures and scaffolds. This review discusses the autologous and allograft transfer systems and the autologous matrix-induced chondrogenesis (AMIC) technique, as well as a summary of the previously discussed techniques, which could become common practice for restoring articular cartilage, thus reducing the need for total hip arthroplasty. Using the British Medical Journal Grading of Recommendations, Assessment, Development and Evaluation (BMJ GRADE) system and Grade system. Comparison of the studies discussed shows that microfracture has the greatest quantity and quality of research, whereas the newer AMIC technique requires more research, but shows promise. Cite this article: W. E. Hotham, A. Malviya. A systematic review of surgical methods to restore articular cartilage in the hip. Bone Joint Res 2018;7:336–342. DOI: 10.1302/2046-3758.75.BJR-2017-0331


Bone & Joint Research
Vol. 7, Issue 4 | Pages 318 - 324
1 Apr 2018
González-Quevedo D Martínez-Medina I Campos A Campos F Carriel V

Objectives

Recently, the field of tissue engineering has made numerous advances towards achieving artificial tendon substitutes with excellent mechanical and histological properties, and has had some promising experimental results. The purpose of this systematic review is to assess the efficacy of tissue engineering in the treatment of tendon injuries.

Methods

We searched MEDLINE, Embase, and the Cochrane Library for the time period 1999 to 2016 for trials investigating tissue engineering used to improve tendon healing in animal models. The studies were screened for inclusion based on randomization, controls, and reported measurable outcomes. The RevMan software package was used for the meta-analysis.


The Bone & Joint Journal
Vol. 100-B, Issue 4 | Pages 455 - 460
1 Apr 2018
Mumith A Thomas M Shah Z Coathup M Blunn G

Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research.

This review describes the current position in the use of additive manufacturing in orthopaedic surgery.

Cite this article: Bone Joint J 2018;100-B:455-60.


Bone & Joint Research
Vol. 7, Issue 4 | Pages 263 - 273
1 Apr 2018
Ferreira E Porter RM

Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation. Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263–273. DOI: 10.1302/2046-3758.74.BJR-2018-0006


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 271 - 284
1 Mar 2018
Hexter AT Thangarajah T Blunn G Haddad FS

Aims

The success of anterior cruciate ligament reconstruction (ACLR) depends on osseointegration at the graft-tunnel interface and intra-articular ligamentization. Our aim was to conduct a systematic review of clinical and preclinical studies that evaluated biological augmentation of graft healing in ACLR.

Materials and Methods

In all, 1879 studies were identified across three databases. Following assessment against strict criteria, 112 studies were included (20 clinical studies; 92 animal studies).


The Bone & Joint Journal
Vol. 100-B, Issue 3 | Pages 269 - 270
1 Mar 2018
Rowan FE Haddad FS


Bone & Joint Research
Vol. 7, Issue 3 | Pages 232 - 243
1 Mar 2018
Winkler T Sass FA Duda GN Schmidt-Bleek K

Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration.

Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.


Bone & Joint Research
Vol. 7, Issue 2 | Pages 187 - 195
1 Feb 2018
Ziebart J Fan S Schulze C Kämmerer PW Bader R Jonitz-Heincke A

Objectives. Enhanced micromotions between the implant and surrounding bone can impair osseointegration, resulting in fibrous encapsulation and aseptic loosening of the implant. Since the effect of micromotions on human bone cells is sparsely investigated, an in vitro system, which allows application of micromotions on bone cells and subsequent investigation of bone cell activity, was developed. Methods. Micromotions ranging from 25 µm to 100 µm were applied as sine or triangle signal with 1 Hz frequency to human osteoblasts seeded on collagen scaffolds. Micromotions were applied for six hours per day over three days. During the micromotions, a static pressure of 527 Pa was exerted on the cells by Ti6Al4V cylinders. Osteoblasts loaded with Ti6Al4V cylinders and unloaded osteoblasts without micromotions served as controls. Subsequently, cell viability, expression of the osteogenic markers collagen type I, alkaline phosphatase, and osteocalcin, as well as gene expression of osteoprotegerin, receptor activator of NF-κB ligand, matrix metalloproteinase-1, and tissue inhibitor of metalloproteinase-1, were investigated. Results. Live and dead cell numbers were higher after 25 µm sine and 50 µm triangle micromotions compared with loaded controls. Collagen type I synthesis was downregulated in respective samples. The metabolic activity and osteocalcin expression level were higher in samples treated with 25 µm micromotions compared with the loaded controls. Furthermore, static loading and micromotions decreased the osteoprotegerin/receptor activator of NF-κB ligand ratio. Conclusion. Our system enables investigation of the behaviour of bone cells at the bone-implant interface under shear stress induced by micromotions. We could demonstrate that micromotions applied under static pressure conditions have a significant impact on the activity of osteoblasts seeded on collagen scaffolds. In future studies, higher mechanical stress will be applied and different implant surface structures will be considered. Cite this article: J. Ziebart, S. Fan, C. Schulze, P. W. Kämmerer, R. Bader, A. Jonitz-Heincke. Effects of interfacial micromotions on vitality and differentiation of human osteoblasts. Bone Joint Res 2018;7:187–195. DOI: 10.1302/2046-3758.72.BJR-2017-0228.R1


Bone & Joint Research
Vol. 7, Issue 2 | Pages 173 - 178
1 Feb 2018
Peng X Wu X Zhang J Zhang G Li G Pan X

Osteoporosis is a systemic skeletal disorder characterized by reduced bone mass and deterioration of bone microarchitecture, which results in increased bone fragility and fracture risk. Casein kinase 2-interacting protein-1 (CKIP-1) is a protein that plays an important role in regulation of bone formation. The effect of CKIP-1 on bone formation is mainly mediated through negative regulation of the bone morphogenetic protein pathway. In addition, CKIP-1 has an important role in the progression of osteoporosis. This review provides a summary of the recent studies on the role of CKIP-1 in osteoporosis development and treatment.

Cite this article: X. Peng, X. Wu, J. Zhang, G. Zhang, G. Li, X. Pan. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res 2018;7:173–178. DOI: 10.1302/2046-3758.72.BJR-2017-0172.R1.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 46 - 57
1 Jan 2018
Zhou J Zhou XG Wang JW Zhou H Dong J

Objective. In the present study, we aimed to assess whether gelatin/β-tricalcium phosphate (β-TCP) composite porous scaffolds could be used as a local controlled release system for vancomycin. We also investigated the efficiency of the scaffolds in eliminating infections and repairing osteomyelitis defects in rabbits. Methods. The gelatin scaffolds containing differing amounts of of β-TCP (0%, 10%, 30% and 50%) were prepared for controlled release of vancomycin and were labelled G-TCP0, G-TCP1, G-TCP3 and G-TCP5, respectively. The Kirby-Bauer method was used to examine the release profile. Chronic osteomyelitis models of rabbits were established. After thorough debridement, the osteomyelitis defects were implanted with the scaffolds. Radiographs and histological examinations were carried out to investigate the efficiency of eliminating infections and repairing bone defects. Results. The prepared gelatin/β-TCP scaffolds exhibited a homogeneously interconnected 3D porous structure. The G-TCP0 scaffold exhibited the longest duration of vancomycin release with a release duration of eight weeks. With the increase of β-TCP contents, the release duration of the β-TCP-containing composite scaffolds was decreased. The complete release of vancomycin from the G-TCP5 scaffold was achieved within three weeks. In the treatment of osteomyelitis defects in rabbits, the G-TCP3 scaffold showed the most efficacious performance in eliminating infections and repairing bone defects. Conclusions. The composite scaffolds could achieve local therapeutic drug levels over an extended duration. The G-TCP3 scaffold possessed the optimal porosity, interconnection and controlled release performance. Therefore, this scaffold could potentially be used in the treatment of chronic osteomyelitis defects. Cite this article: J. Zhou, X. G. Zhou, J. W. Wang, H. Zhou, J. Dong. Treatment of osteomyelitis defects by a vancomycin-loaded gelatin/β-tricalcium phosphate composite scaffold. Bone Joint Res 2018;7:46–57. DOI: 10.1302/2046-3758.71.BJR-2017-0129.R2


The Bone & Joint Journal
Vol. 100-B, Issue 1_Supple_A | Pages 9 - 16
1 Jan 2018
Su EP Justin DF Pratt CR Sarin VK Nguyen VS Oh S Jin S

The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO2) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis. Collectively, the properties of Ti implant surfaces enhanced with TiO2 nanotubes show great promise.

Cite this article: Bone Joint J 2018;100-B(1 Supple A):9–16.


Bone & Joint 360
Vol. 6, Issue 4 | Pages 34 - 37
1 Aug 2017


Bone & Joint Research
Vol. 6, Issue 6 | Pages 366 - 375
1 Jun 2017
Neves N Linhares D Costa G Ribeiro CC Barbosa MA

Objectives

This systematic review aimed to assess the in vivo and clinical effect of strontium (Sr)-enriched biomaterials in bone formation and/or remodelling.

Methods

A systematic search was performed in Pubmed, followed by a two-step selection process. We included in vivo original studies on Sr-containing biomaterials used for bone support or regeneration, comparing at least two groups that only differ in Sr addition in the experimental group.


Objectives. The lack of effective treatment for cartilage defects has prompted investigations using tissue engineering techniques for their regeneration and repair. The success of tissue-engineered repair of cartilage may depend on the rapid and efficient adhesion of transplanted cells to a scaffold. Our aim in this study was to repair full-thickness defects in articular cartilage in the weight-bearing area of a porcine model, and to investigate whether the CD44 monoclonal antibody biotin-avidin (CBA) binding technique could provide satisfactory tissue-engineered cartilage. Methods. Cartilage defects were created in the load-bearing region of the lateral femoral condyle of mini-type pigs. The defects were repaired with traditional tissue-engineered cartilage, tissue-engineered cartilage constructed with the biotin-avidin (BA) technique, tissue-engineered cartilage constructed with the CBA technique and with autologous cartilage. The biomechanical properties, Western blot assay, histological findings and immunohistochemical staining were explored. Results. The CBA group showed similar results to the autologous group in biomechanical properties, Moran’s criteria, histological tests and Wakitani histological scoring. Conclusions. These results suggest that tissue-engineered cartilage constructed using the CBA technique could be used effectively to repair cartilage defects in the weight-bearing area of joints. Cite this article: H. Lin, J. Zhou, L. Cao, H. R. Wang, J. Dong, Z. R. Chen. Tissue-engineered cartilage constructed by a biotin-conjugated anti-CD44 avidin binding technique for the repairing of cartilage defects in the weight-bearing area of knee joints in pigs. Bone Joint Res 2017;6:–295. DOI: 10.1302/2046-3758.65.BJR-2016-0277


Bone & Joint Research
Vol. 6, Issue 4 | Pages 208 - 215
1 Apr 2017
Decambron A Manassero M Bensidhoum M Lecuelle B Logeart-Avramoglou D Petite H Viateau V

Objectives. To compare the therapeutic potential of tissue-engineered constructs (TECs) combining mesenchymal stem cells (MSCs) and coral granules from either Acropora or Porites to repair large bone defects. Materials and Methods. Bone marrow-derived, autologous MSCs were seeded on Acropora or Porites coral granules in a perfusion bioreactor. Acropora-TECs (n = 7), Porites-TECs (n = 6) and bone autografts (n = 2) were then implanted into 25 mm long metatarsal diaphyseal defects in sheep. Bimonthly radiographic follow-up was completed until killing four months post-operatively. Explants were subsequently processed for microCT and histology to assess bone formation and coral bioresorption. Statistical analyses comprised Mann-Whitney, t-test and Kruskal–Wallis tests. Data were expressed as mean and standard deviation. Results. A two-fold increaseof newly formed bone volume was observed for Acropora-TECs when compared with Porites-TECs (14 . sd. 1089 mm. 3. versus 782 . sd. 507 mm. 3. ; p = 0.09). Bone union was consistent with autograft (1960 . sd. 518 mm. 3. ). The kinetics of bioresorption and bioresorption rates at four months were different for Acropora-TECs and Porites-TECs (81% . sd. 5% versus 94% . sd. 6%; p = 0.04). In comparing the defects that healed with those that did not, we observed that, when major bioresorption of coral at two months occurs and a scaffold material bioresorption rate superior to 90% at four months is achieved, bone nonunion consistently occurred using coral-based TECs. Discussion. Bone regeneration in critical-size defects could be obtained with full bioresorption of the scaffold using coral-based TECs in a large animal model. The superior performance of Acropora-TECs brings us closer to a clinical application, probably because of more suitable bioresorption kinetics. However, nonunion still occurred in nearly half of the bone defects. Cite this article: A. Decambron, M. Manassero, M. Bensidhoum, B. Lecuelle, D. Logeart-Avramoglou, H. Petite, V. Viateau. A comparative study of tissue-engineered constructs from Acropora and Porites coral in a large animal bone defect model. Bone Joint Res 2017;6:208–215. DOI: 10.1302/2046-3758.64.BJR-2016-0236.R1


Bone & Joint Research
Vol. 6, Issue 4 | Pages 231 - 244
1 Apr 2017
Zhang J Yuan T Zheng N Zhou Y Hogan MV Wang JH

Objectives

After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP).

Methods

Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing.