Advertisement for orthosearch.org.uk
Results 1 - 20 of 676
Results per page:
Bone & Joint Research
Vol. 14, Issue 2 | Pages 124 - 135
20 Feb 2025
Huang J Zheng J Yin J Lin R Wu J Xu H Zhu J Zhang H Wang G Cai D

Aims. To examine how eukaryotic translation initiation factor 5A (eIF5A) regulates osteoarthritis (OA) during mechanical overload and the specific mechanism. Methods. Histological experiments used human bone samples and C57BL/6J mice knee samples. All cell experiments were performed using mice primary chondrocytes. Messenger RNA (mRNA) sequencing was performed on chondrocytes treated with 20% cyclic tensile strain for 24 hours. Western blot (WB) and quantitative polymerase chain reaction were employed to detect relevant indicators of cartilage function in chondrocytes. We created the destabilization of the medial meniscus (DMM) model and the mechanical overload-induced OA model and injected with overexpressing eIF5A adenovirus (eIF5A-ADV). Cartilage degeneration was evaluated using Safranin O/Fast Green staining. Relative protein levels were ascertained by immunohistochemistry (IHC) and immunofluorescence (IF) staining. Results. After OA initiation, eIF5A caused an upregulation of type II collagen (COL2) and a downregulation of matrix metalloproteinase 13 (MMP13), P16, and P21, which postponed the aggravation of OA. Further sequencing and experimental findings revealed that eIF5A knockdown accelerated the progression of OA by boosting the expression of histone acetyltransferase cyclic-adenosine monophosphate response element binding protein (CREB)-binding protein (CREBBP) to mediate activation of the Notch pathway. Conclusion. Our findings identified a crucial functional mechanism for the onset of OA, and suggest that intra-articular eIF5A injections might be a useful therapeutic strategy for OA treatment. Cite this article: Bone Joint Res 2025;14(2):124–135


Bone & Joint Research
Vol. 14, Issue 2 | Pages 136 - 142
20 Feb 2025
Walter N Loew T Hinterberger T Mohokum M Alt V Rupp M

Aims

Fracture-related infections (FRIs) are a major concern for patients and healthcare systems, yet their impact on mental health has been largely overlooked. This study aimed to assess the longitudinal impact of FRI on patients’ quality of life.

Methods

A prospective study was conducted at a level 1 trauma centre between January 2020 and December 2022. In total, 56 patients participated, with quality of life assessed at five timepoints: one week preoperatively, and one, three, six, and 12 months postoperatively. Statistical analysis was performed using repeated measures analysis of variance (ANOVA) with adjusted post-hoc analysis.


Bone & Joint Open
Vol. 6, Issue 2 | Pages 178 - 185
11 Feb 2025
Gallant A Vandekerckhove P Beckers L De Smet A Depuydt C Victor J Hardeman F

Aims

Valgus subsidence of uncemented tibial components following medial unicompartmental knee arthroplasty (UKA) poses a challenge in the early postoperative phase, necessitating a comprehensive understanding of its prevalence, risk factors, and impact on patient outcomes.

Methods

This prospective multicentre study analyzed 97 knees from 90 patients undergoing UKA across four participating hospitals. A standardized surgical technique was employed uniformly by all participating surgeons. Postoperative evaluations were conducted preoperatively, and one day, four weeks, three months, and one year postoperative, encompassing weightbearing radiographs, bone mineral density assessments, and clinical outcome reports using the Forgotten Joint Score and Oxford Knee Score. Statistical analyses, including non-parametric correlation analysis using the Kendall correlation coefficient and Mann-Whitney U test, were performed to explore associations between subsidence and various patient-related or radiological parameters.


Bone & Joint Open
Vol. 6, Issue 2 | Pages 135 - 146
6 Feb 2025
Sherratt FC Swaby L Walker K Jayasuriya R Campbell L Mills AJ Gardner AC Perry DC Cole A Young B

Aims. The Bracing Adolescent Idiopathic Scoliosis (BASIS) study is a randomized controlled non-inferiority pragmatic trial of ‘full-time bracing’ (FTB) compared to ‘night-time bracing’ (NTB) for the treatment of adolescent idiopathic scoliosis (AIS). We anticipated that recruiting patients to BASIS would be challenging, as it is a paediatric trial comparing two markedly different bracing pathways. No previous studies have compared the experiences of AIS patients treated with FTB to those treated with NTB. This qualitative study was embedded in BASIS to explore families’ perspectives of BASIS, to inform trial communication, and to identify strategies to support patients treated in a brace. Methods. Semi-structured interviews were conducted with parents (n = 26) and young people (n = 21) who had been invited to participate in BASIS at ten of the 22 UK paediatric spine services in hospitals recruiting to BASIS. Audio-recorded interviews were transcribed and analyzed thematically. Results. Families viewed their interactions with BASIS recruiters positively, but were often confused about core aspects of BASIS, such as the aims, expectations of bracing, and the process of randomization. Participants typically expressed a preference for NTB, but recruiters may have framed NTB more favourably. Patients and parents reported challenges wearing a brace, such as physical discomfort, feelings of self-consciousness, difficulty participating in physical activities, and strain on financial resources to support brace use. Patients in FTB reported more pronounced challenges. While families valued health professional support, they felt there was a lack of social, emotional, and school support, and relied on online resources, as well private counselling services to address this need. Conclusion. The findings informed the development of resources and strategies, including guidance for schools and the recommendations in this paper, to support patients to wear NTB and FTB as prescribed. The results indicated opportunities for recruiters to enhance trial communication in ways that could improve informed consent and recruitment to BASIS, and inform future trials of bracing. Cite this article: Bone Jt Open 2025;6(2):135–146


The Bone & Joint Journal
Vol. 107-B, Issue 2 | Pages 261 - 267
1 Feb 2025
Theunissen WWES van der Steen MC Klerkx T Schonck C Besselaar AT van Douveren FQMP Tolk JJ

Aims

Worldwide controversy exists on the optimal treatment of stable dysplastic hips. The most common treatment options are abduction brace treatment and active surveillance. The primary aim of this study was to assess the effect of active surveillance in stable hip dysplasia, by investigating the percentage of Graf IIb stable dysplastic hips that recover spontaneously without abduction brace treatment. The second aim was to identify prognostic factors for spontaneous recovery of stable dysplastic hips.

Methods

A single-centre, prospective cohort study was conducted at the Máxima Medical Center between 1 March 2019 and 1 March 2023. Infants aged three to 4.5 months at the first outpatient clinic visit, diagnosed with Graf IIb hip dysplasia, and treated with active surveillance were included. Spontaneous recovery was defined as infants who had a normalized hip on ultrasound (α-angle ≥ 60°) after six weeks of active surveillance without receiving abduction brace treatment. Baseline infant characteristics and ultrasound measurements were used as potential predictor variables for spontaneous recovery in logistic regression analyses.


Bone & Joint Research
Vol. 14, Issue 1 | Pages 42 - 45
21 Jan 2025
Fontalis A Wignadasan W Kayani B Haddad FS


Bone & Joint Research
Vol. 14, Issue 1 | Pages 5 - 15
1 Jan 2025
Tanveer M Klein K von Rechenberg B Darwiche S Dailey HL

Aims. The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. Methods. MicroCT scans of eight female sheep with plated mid-shaft tibial osteotomies were used to create image-based finite element models. Virtual mechanical testing was used to compute postoperative gap-closing and 3D continuum strains representing compression (volumetric strain) and shear deformation (distortional strain). Callus mineralization was measured in zones in and around the osteotomy gap. Results. Gap-closing strains averaged 51% (mean) at the far cortex. Peak compressive volumetric strain averaged 32% and only a small tissue volume (average 0.3 cm. 3. ) within the gap experienced compressive strains > 10%. Distortional strains were much higher and more widespread, peaking at a mean of 115%, with a mean of 3.3 cm. 3. of tissue in and around the osteotomy experiencing distortional strains > 10%. Callus mineralization initiated outside the high-strain gap and was significantly lower within the fracture gap compared to around it at nine weeks. Conclusion. Ovine osteotomies can heal with high gap strains (> 10%) dominated by shear conditions. High gap strain appears to be a transient local limiter of osteogenesis, not a global inhibitor of secondary fracture repair. Cite this article: Bone Joint Res 2025;14(1):5–15


Bone & Joint Research
Vol. 13, Issue 12 | Pages 716 - 724
4 Dec 2024
Cao S Chen Y Zhu Y Jiang S Yu Y Wang X Wang C Ma X

Aims

This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation.

Methods

A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 703 - 715
3 Dec 2024
Raza IGA Snelling SJB Mimpen JY

Aims

Extracellular matrix (ECM) is a critical determinant of tissue mechanobiology, yet remains poorly characterized in joint tissues beyond cartilage in osteoarthritis (OA). This review aimed to define the composition and architecture of non-cartilage soft joint tissue structural ECM in human OA, and to compare the changes observed in humans with those seen in animal models of the disease.

Methods

A systematic search strategy, devised using relevant matrix, tissue, and disease nomenclature, was run through the MEDLINE, Embase, and Scopus databases. Demographic, clinical, and biological data were extracted from eligible studies. Bias analysis was performed.


Bone & Joint Research
Vol. 13, Issue 12 | Pages 695 - 702
1 Dec 2024
Cordero García-Galán E Medel-Plaza M Pozo-Kreilinger JJ Sarnago H Lucía Ó Rico-Nieto A Esteban J Gomez-Barrena E

Aims

Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting.

Methods

Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with Staphylococcus aureus biofilm. Sacrifice and sample collection were performed 24, 48, or 96 hours postoperatively. Retrieved screws were sonicated, and adhered bacteria were estimated via drop-plate. Width of bone necrosis in retrieved femora was assessed through microscopic examination. Analysis was performed using non-parametric tests with significance fixed at p ≤ 0.05.


Bone & Joint 360
Vol. 13, Issue 6 | Pages 39 - 41
1 Dec 2024

The December 2024 Oncology Roundup360 looks at: Non-reversed great saphenous vein grafts for vascular reconstruction after resection of lower limb sarcoma; Detrimental effects of COVID-19 pandemic on patients with limb bone sarcoma: reference centre experience; Whole-body staging guidelines in sarcoma; Intraoperative marrow margin frozen section in limb bone sarcoma resection; Vacuum-assisted closure and paediatric oncological limb salvage; Treatment differences and long-term outcomes in adults and children with Ewing’s sarcoma; Survival, complications, and functional outcomes of uncemented distal femoral endoprosthesis with short, curved stem for patients with bone tumours.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1003 - 1012
8 Nov 2024
Gabr A Fontalis A Robinson J Hage W O'Leary S Spalding T Haddad FS

Aims

The aim of this study was to compare patient-reported outcomes (PROMs) following isolated anterior cruciate ligament reconstruction (ACLR), with those following ACLR and concomitant meniscal resection or repair.

Methods

We reviewed prospectively collected data from the UK National Ligament Registry for patients who underwent primary ACLR between January 2013 and December 2022. Patients were categorized into five groups: isolated ACLR, ACLR with medial meniscus (MM) repair, ACLR with MM resection, ACLR with lateral meniscus (LM) repair, and ACLR with LM resection. Linear regression analysis, with isolated ACLR as the reference, was performed after adjusting for confounders.


Bone & Joint Research
Vol. 13, Issue 11 | Pages 632 - 646
7 Nov 2024
Diaz Dilernia F Watson D Heinrichs DE Vasarhelyi E

Aims. The mechanism by which synovial fluid (SF) kills bacteria has not yet been elucidated, and a better understanding is needed. We sought to analyze the antimicrobial properties of exogenous copper in human SF against Staphylococcus aureus. Methods. We performed in vitro growth and viability assays to determine the capability of S. aureus to survive in SF with the addition of 10 µM of copper. We determined the minimum bactericidal concentration of copper (MBC-Cu) and evaluated its sensitivity to killing, comparing wild type (WT) and CopAZB-deficient USA300 strains. Results. UAMS-1 demonstrated a greater sensitivity to SF compared to USA300 WT at 12 hours (p = 0.001) and 24 hours (p = 0.027). UAMS-1 died in statistically significant quantities at 24 hours (p = 0.017), and USA300 WT survived at 24 hours. UAMS-1 was more susceptible to the addition of copper at four (p = 0.001), 12 (p = 0.005), and 24 hours (p = 0.006). We confirmed a high sensitivity to killing with the addition of exogenous copper on both strains at four (p = 0.011), 12 (p = 0.011), and 24 hours (p = 0.011). WT and CopAZB-deficient USA300 strains significantly died in SF, demonstrating a MBC-Cu of 50 µM against USA300 WT (p = 0.011). Conclusion. SF has antimicrobial properties against S. aureus, and UAMS-1 was more sensitive than USA300 WT. Adding 10 µM of copper was highly toxic, confirming its bactericidal effect. We found CopAZB proteins to be involved in copper effluxion by demonstrating the high sensitivity of mutant strains to lower copper concentrations. Thus, we propose CopAZB proteins as potential targets and use exogenous copper as a treatment alternative against S. aureus. Cite this article: Bone Joint Res 2024;13(11):632–646


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1203 - 1205
1 Nov 2024
Taylor LA Breslin MA Hendrickson SB Vallier HA Ollivere BJ


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics. Results. There were evident biomechanical differences between the simulated patient models, but also trends that appeared reproducible at the population level. Optimizing the implant position significantly reduced the maximum observed strain root mean square deviations within the cohort from 36.5% to below 5.3% for all but the anterolateral ligament; and concomitantly reduced the kinematic deviations from 3.8 mm (SD 1.7) and 4.7° (SD 1.9°) with MA to 2.7 mm (SD 1.4) and 3.7° (SD 1.9°) relative to the pre-diseased state. To achieve this, the femoral component consistently required translational adjustments in the anterior, lateral, and proximal directions, while the tibial component required a more posterior slope and varus rotation in most cases. Conclusion. These findings confirm that MA-induced biomechanical alterations relative to the pre-diseased state can be reduced by optimizing the implant position, and may have implications to further advance pre-planning in robotic-assisted surgery in order to restore pre-diseased knee function. Cite this article: Bone Joint J 2024;106-B(11):1231–1239


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 546 - 558
4 Oct 2024
Li Y Wuermanbieke S Wang F Mu W Ji B Guo X Zou C Chen Y Zhang X Cao L

Aims

The optimum type of antibiotics and their administration route for treating Gram-negative (GN) periprosthetic joint infection (PJI) remain controversial. This study aimed to determine the GN bacterial species and antibacterial resistance rates related to clinical GN-PJI, and to determine the efficacy and safety of intra-articular (IA) antibiotic injection after one-stage revision in a GN pathogen-induced PJI rat model of total knee arthroplasty.

Methods

A total of 36 consecutive PJI patients who had been infected with GN bacteria between February 2015 and December 2021 were retrospectively recruited in order to analyze the GN bacterial species involvement and antibacterial resistance rates. Antibiotic susceptibility assays of the GN bacterial species were performed to screen for the most sensitive antibiotic, which was then used to treat the most common GN pathogen-induced PJI rat model. The rats were randomized either to a PJI control group or to three meropenem groups (intraperitoneal (IP), IA, and IP + IA groups). After two weeks of treatment, infection control level, the side effects, and the volume of antibiotic use were evaluated.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 535 - 545
2 Oct 2024
Zou C Guo W Mu W Wahafu T Li Y Hua L Xu B Cao L

Aims

We aimed to determine the concentrations of synovial vancomycin and meropenem in patients treated by single-stage revision combined with intra-articular infusion following periprosthetic joint infection (PJI), thereby validating this drug delivery approach.

Methods

We included 14 patients with PJI as noted in their medical records between November 2021 and August 2022, comprising eight hip and seven knee joint infections, with one patient experiencing bilateral knee infections. The patients underwent single-stage revision surgery, followed by intra-articular infusion of vancomycin and meropenem (50,000 µg/ml). Synovial fluid samples were collected to assess antibiotic concentrations using high-performance liquid chromatography.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1165 - 1175
1 Oct 2024
Frost Teilmann J Petersen ET Thillemann TM Hemmingsen CK Olsen Kipp J Falstie-Jensen T Stilling M

Aims

The aim of this study was to evaluate the kinematics of the elbow following increasing length of the radius with implantation of radial head arthroplasties (RHAs) using dynamic radiostereometry (dRSA).

Methods

Eight human donor arms were examined by dRSA during motor-controlled flexion and extension of the elbow with the forearm in an unloaded neutral position, and in pronation and supination with and without a 10 N valgus or varus load, respectively. The elbows were examined before and after RHA with stem lengths of anatomical size, + 2 mm, and + 4 mm. The ligaments were maintained intact by using a step-cut lateral humeral epicondylar osteotomy, allowing the RHAs to be repeatedly exchanged. Bone models were obtained from CT scans, and specialized software was used to match these models with the dRSA recordings. The flexion kinematics of the elbow were described using anatomical coordinate systems to define translations and rotations with six degrees of freedom.