The aim of this study was to report long-term clinical outcomes of a modern convertible metal-backed glenoid (MBG) in total shoulder arthroplasty (TSA). After a minimum of 15 years, a previously studied cohort of 35 patients who received a modern convertible MBG during the period 1996 to 2005 was contacted for clinical and radiological follow-up. At last follow-up, patients were evaluated radiologically and clinically according to the Constant Score, Simple Shoulder Test, and visual analogue scale for pain. Complications and revisions were recorded, and survival analysis was performed.Aims
Methods
Bone defects are frequently observed in anterior shoulder instability. Over the last decade, knowledge of the association of bone loss with increased failure rates of soft-tissue repair has shifted the surgical management of chronic shoulder instability. On the glenoid side, there is no controversy about the critical glenoid bone loss being 20%. However, poor outcomes have been described even with a subcritical glenoid bone defect as low as 13.5%. On the humeral side, the Hill-Sachs lesion should be evaluated concomitantly with the glenoid defect as the two sides of the same bipolar lesion which interact in the instability process, as described by the glenoid track concept. We advocate adding remplissage to every Bankart repair in patients with a Hill-Sachs lesion, regardless of the glenoid bone loss. When critical or subcritical glenoid bone loss occurs in active patients (> 15%) or bipolar off-track lesions, we should consider anterior glenoid bone reconstructions. The techniques have evolved significantly over the last two decades, moving from open procedures to arthroscopic, and from screw fixation to metal-free fixation. The new arthroscopic techniques of glenoid bone reconstruction procedures allow precise positioning of the graft, identification, and treatment of concomitant injuries with low morbidity and faster recovery. Given the problems associated with bone resorption and metal hardware protrusion, the new metal-free techniques for Latarjet or free bone block procedures seem a good solution to avoid these complications, although no long-term data are yet available. Cite this article:
The presence of facet tropism has been correlated with an elevated susceptibility to lumbar disc pathology. Our objective was to evaluate the impact of facet tropism on chronic lumbosacral discogenic pain through the analysis of clinical data and finite element modelling (FEM). Retrospective analysis was conducted on clinical data, with a specific focus on the spinal units displaying facet tropism, utilizing FEM analysis for motion simulation. We studied 318 intervertebral levels in 156 patients who had undergone provocation discography. Significant predictors of clinical findings were identified by univariate and multivariate analyses. Loading conditions were applied in FEM simulations to mimic biomechanical effects on intervertebral discs, focusing on maximal displacement and intradiscal pressures, gauged through alterations in disc morphology and physical stress.Aims
Methods
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
The August 2024 Hip & Pelvis Roundup360 looks at: Understanding perceived leg length discrepancy post-total hip arthroplasty: the role of pelvic obliquity; Influence of femoral stem design on revision rates in total hip arthroplasty; Outcomes of arthroscopic labral treatment of femoroacetabular impingement in adolescents; Characteristics and quality of online searches for direct anterior versus posterior approach for total hip arthroplasty; Rapid return to braking after anterior and posterior approach total hip arthroplasty; How much protection does a collar provide?; Timing matters: reducing infection risk in total hip arthroplasty with corticosteroid injection intervals; Identifying pain recovery patterns in total hip arthroplasty using PROMIS data.
Patient dissatisfaction is not uncommon following primary total knee arthroplasty. One proposed method to alleviate this is by improving knee kinematics. Therefore, we aimed to answer the following research question: are there significant differences in knee kinematics based on the design of the tibial insert (cruciate-retaining (CR), ultra-congruent (UC), or medial congruent (MC))? Overall, 15 cadaveric knee joints were examined with a CR implant with three different tibial inserts (CR, UC, and MC) using an established knee joint simulator. The effects on coronal alignment, medial and lateral femoral roll back, femorotibial rotation, bony rotations (femur, tibia, and patella), and patellofemoral length ratios were determined.Aims
Methods
The April 2024 Trauma Roundup360 looks at: The infra-acetabular screw in acetabular fracture surgery; Is skin traction helpful in patients with intertrochanteric hip fractures?; Reducing pain and improving function following hip fracture surgery; Are postoperative splints helpful following ankle fracture fixation?; Biomechanics of internal fixation in Hoffa fractures: a comparison of four different constructs; Dual-plate fixation of periprosthetic distal femur fractures; Do direct oral anticoagulants necessarily mean a delay to hip fracture surgery?; Plate or retrograde nail for low distal femur fractures?.
This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.Aims
Methods
Anterior cruciate ligament (ACL) injuries are among the most common and debilitating knee injuries in professional athletes with an incidence in females up to eight-times higher than their male counterparts. ACL injuries can be career-threatening and are associated with increased risk of developing knee osteoarthritis in future life. The increased risk of ACL injury in females has been attributed to various anatomical, developmental, neuromuscular, and hormonal factors. Anatomical and hormonal factors have been identified and investigated as significant contributors including osseous anatomy, ligament laxity, and hamstring muscular recruitment. Postural stability and impact absorption are associated with the stabilizing effort and stress on the ACL during sport activity, increasing the risk of noncontact pivot injury. Female patients have smaller diameter hamstring autografts than males, which may predispose to increased risk of re-rupture following ACL reconstruction and to an increased risk of chondral and meniscal injuries. The addition of an extra-articular tenodesis can reduce the risk of failure; therefore, it should routinely be considered in young elite athletes. Prevention programs target key aspects of training including plyometrics, strengthening, balance, endurance and stability, and neuromuscular training, reducing the risk of ACL injuries in female athletes by up to 90%. Sex disparities in access to training facilities may also play an important role in the risk of ACL injuries between males and females. Similarly, football boots, pitches quality, and football size and weight should be considered and tailored around females’ characteristics. Finally, high levels of personal and sport-related stress have been shown to increase the risk of ACL injury which may be related to alterations in attention and coordination, together with increased muscular tension, and compromise the return to sport after ACL injury. Further investigations are still necessary to better understand and address the risk factors involved in ACL injuries in female athletes. Cite this article:
The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection. We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.Aims
Methods
Aims. Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration. Methods. A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses. Results. At 12 weeks, the VBPC group significantly increased new bone formation volume compared with the other groups.
Research on hip biomechanics has analyzed femoroacetabular contact pressures and forces in distinct hip conditions, with different procedures, and used diverse loading and testing conditions. The aim of this scoping review was to identify and summarize the available evidence in the literature for hip contact pressures and force in cadaver and in vivo studies, and how joint loading, labral status, and femoral and acetabular morphology can affect these biomechanical parameters. We used the PRISMA extension for scoping reviews for this literature search in three databases. After screening, 16 studies were included for the final analysis.Aims
Methods
The December 2023 Shoulder & Elbow Roundup360 looks at: Clavicle fractures: is the evidence changing practice?; Humeral shaft fractures, and another meta-analysis…let’s wait for the trials now!; Hemiarthroplasty or total elbow arthroplasty for distal humeral fractures…what does the registry say?; What to do with a first-time shoulder dislocation?; Deprivation indices and minimal clinically important difference for patient-reported outcomes after arthroscopic rotator cuff repair; Prospective randomized clinical trial of arthroscopic repair versus debridement for partial subscapularis tears; Long-term follow-up following closed reduction and early movement for simple dislocation of the elbow; Sternoclavicular joint reconstruction for traumatic acute and chronic anterior and posterior instability.
Injuries to the quadriceps muscle group are common in athletes performing high-speed running and kicking sports. The complex anatomy of the rectus femoris puts it at greatest risk of injury. There is variability in prognosis in the literature, with reinjury rates as high as 67% in the severe graded proximal tear. Studies have highlighted that athletes can reinjure after nonoperative management, and some benefit may be derived from surgical repair to restore function and return to sport (RTS). This injury is potentially career-threatening in the elite-level athlete, and we aim to highlight the key recent literature on interventions to restore strength and function to allow early RTS while reducing the risk of injury recurrence. This article reviews the optimal diagnostic strategies and classification of quadriceps injuries. We highlight the unique anatomy of each injury on MRI and the outcomes of both nonoperative and operative treatment, providing an evidence-based management framework for athletes. Cite this article:
The anterior cruciate ligament (ACL) is frequently injured in elite athletes, with females up to eight times more likely to suffer an ACL tear than males.
The October 2023 Shoulder & Elbow Roundup360 looks at: Arthroscopic capsular shift surgery in patients with atraumatic shoulder joint instability: a randomized, placebo-controlled trial; Superior capsular reconstruction partially restores native glenohumeral loads in a dynamic model; Gene expression in glenoid articular cartilage varies in acute instability, chronic instability, and osteoarthritis; Intra-articular injection versus interscalene brachial plexus block for acute-phase postoperative pain management after arthroscopic shoulder surgery; Level of pain catastrophizing rehab in subacromial impingement: secondary analyses from a pragmatic randomized controlled trial (the SExSI Trial); Anterosuperior versus deltopectoral approach for primary reverse total shoulder arthroplasty: a study of 3,902 cases from the Dutch National Arthroplasty Registry with a minimum follow-up of five years; Assessment of progression and clinical relevance of stress-shielding around press-fit radial head arthroplasty: a comparative study of two implants; A number of modifiable and non-modifiable factors increase the risk for elbow medial ulnar collateral ligament injury in baseball players: a systematic review.
This study aimed to establish the optimal fixation methods for calcaneal tuberosity avulsion fractures with different fragment thicknesses in a porcine model. A total of 36 porcine calcanea were sawed to create simple avulsion fractures with three different fragment thicknesses (5, 10, and 15 mm). They were randomly fixed with either two suture anchors or one headless screw. Load-to-failure and cyclic loading tension tests were performed for the biomechanical analysis.Aims
Methods
The Exeter short stem was designed for patients with Dorr type A femora and short-term results are promising. The aim of this study was to evaluate the minimum five-year stem migration pattern of Exeter short stems in comparison with Exeter standard stems. In this case-control study, 25 patients (22 female) at mean age of 78 years (70 to 89) received cemented Exeter short stem (case group). Cases were selected based on Dorr type A femora and matched first by Dorr type A and then age to a control cohort of 21 patients (11 female) at mean age of 74 years (70 to 89) who received with cemented Exeter standard stems (control group). Preoperatively, all patients had primary hip osteoarthritis and no osteoporosis as confirmed by dual X-ray absorptiometry scanning. Patients were followed with radiostereometry for evaluation of stem migration (primary endpoint), evaluation of cement quality, and Oxford Hip Score. Measurements were taken preoperatively, and at three, 12, and 24 months and a minimum five-year follow-up.Aims
Methods
There is a disparity in sport-related injuries between sexes, with females sustaining non-contact musculoskeletal injuries at a higher rate. Anterior cruciate ligament ruptures are between two and eight times more common than in males, and females also have a higher incidence of ankle sprains, patellofemoral pain, and bone stress injuries. The sequelae of such injuries can be devastating to an athlete, resulting in time out of sport, surgery, and the early onset of osteoarthritis. It is important to identify the causes of this disparity and introduce prevention programmes to reduce the incidence of these injuries. A natural difference reflects the effect of reproductive hormones in females, which have receptors in certain musculoskeletal tissues. Relaxin increases ligamentous laxity. Oestrogen decreases the synthesis of collagen and progesterone does the opposite. Insufficient diet and intensive training can lead to menstrual irregularities, which are common in female athletes and result in injury, whereas oral contraception may have a protective effect against certain injuries. It is important for coaches, physiotherapists, nutritionists, doctors, and athletes to be aware of these issues and to implement preventive measures. This annotation explores the relationship between the menstrual cycle and orthopaedic sports injuries in pre-menopausal females, and proposes recommendations to mitigate the risk of sustaining these injuries. Cite this article:
Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model. We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.Aims
Methods
The aims of this study were to identify means to quantify coronal plane displacement associated with distal radius fractures (DRFs), and to understand their relationship to radial inclination (RI). From posteroanterior digital radiographs of healed DRFs in 398 female patients aged 70 years or older, and 32 unfractured control wrists, the relationships of RI, quantifiably, to four linear measurements made perpendicular to reference distal radial shaft (DRS) and ulnar shaft (DUS) axes were analyzed: 1) DRS to radial aspect of ulnar head (DRS-U); 2) DUS to volar-ulnar corner of distal radius (DUS-R); 3) DRS to proximal capitate (DRS-PC); and 4) DRS to DUS (interaxis distance, IAD); and, qualitatively, to the distal ulnar fracture, and its intersection with the DUS axis.Aims
Methods
Mechanical stimulation is a key factor in the development and healing of tendon-bone insertion. Treadmill training is an important rehabilitation treatment. This study aims to investigate the benefits of treadmill training initiated on postoperative day 7 for tendon-bone insertion healing. A tendon-bone insertion injury healing model was established in 92 C57BL/6 male mice. All mice were divided into control and training groups by random digital table method. The control group mice had full free activity in the cage, and the training group mice started the treadmill training on postoperative day 7. The quality of tendon-bone insertion healing was evaluated by histology, immunohistochemistry, reverse transcription quantitative polymerase chain reaction, Western blotting, micro-CT, micro-MRI, open field tests, and CatWalk gait and biomechanical assessments.Aims
Methods
It has been established that mechanical stimulation benefits tendon-bone (T-B) healing, and macrophage phenotype can be regulated by mechanical cues; moreover, the interaction between macrophages and mesenchymal stem cells (MSCs) plays a fundamental role in tissue repair. This study aimed to investigate the role of macrophage-mediated MSC chondrogenesis in load-induced T-B healing in depth. C57BL/6 mice rotator cuff (RC) repair model was established to explore the effects of mechanical stimulation on macrophage polarization, transforming growth factor (TGF)-β1 generation, and MSC chondrogenesis within T-B enthesis by immunofluorescence and enzyme-linked immunosorbent assay (ELISA). Macrophage depletion was performed by clodronate liposomes, and T-B healing quality was evaluated by histology and biomechanics. In vitro, bone marrow-derived macrophages (BMDMs) were stretched with CELLOAD-300 load system and macrophage polarization was identified by flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). MSC chondrogenic differentiation was measured by histochemical analysis and qRT-PCR. ELISA and qRT-PCR were performed to screen the candidate molecules that mediated the pro-chondrogenic function of mechanical stimulated BMDMs.Aims
Methods
Despite being one of the most common injuries around the elbow, the optimal treatment of olecranon fractures is far from established and stimulates debate among both general orthopaedic trauma surgeons and upper limb specialists. It is almost universally accepted that stable non-displaced fractures can be safely treated nonoperatively with minimal specialist input. Internal fixation is recommended for the vast majority of displaced fractures, with a range of techniques and implants to choose from. However, there is concern regarding the complication rates, largely related to symptomatic metalwork resulting in high rates of implant removal. As the number of elderly patients sustaining these injuries increases, we are becoming more aware of the issues associated with fixation in osteoporotic bone and the often fragile soft-tissue envelope in this group. Given this, there is evidence to support an increasing role for nonoperative management in this high-risk demographic group, even in those presenting with displaced and/or multifragmentary fracture patterns. This review summarizes the available literature to date, focusing predominantly on the management techniques and available implants for stable fractures of the olecranon. It also offers some insights into the potential avenues for future research, in the hope of addressing some of the pertinent questions that remain unanswered. Cite this article:
Aims. As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Methods. Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury.
The tibial component of total knee arthroplasty can either be an all-polyethylene (AP) implant or a metal-backed (MB) implant. This study aims to compare the five-year functional outcomes of AP tibial components to MB components in patients aged over 70 years. Secondary aims are to compare quality of life, implant survivorship, and cost-effectiveness. A group of 130 patients who had received an AP tibial component were matched for demographic factors of age, BMI, American Society of Anesthesiologists (ASA) grade, sex, and preoperative Knee Society Score (KSS) to create a comparison group of 130 patients who received a MB tibial component. Functional outcome was assessed prospectively by KSS, quality of life by 12-Item Short-Form Health Survey questionnaire (SF-12), and range of motion (ROM), and implant survivorships were compared. The SF six-dimension (6D) was used to calculate the incremental cost effectiveness ratio (ICER) for AP compared to MB tibial components using quality-adjusted life year methodology.Aims
Methods
This study examined whether systemic administration of melatonin would have different effects on osseointegration in ovariectomized (OVX) rats, depending on whether this was administered during the day or night. In this study, a titanium rod was implanted in the medullary cavity of one femoral metaphysis in OVX rats, and then the rats were randomly divided into four groups: Sham group (Sham, n = 10), OVX rat group (OVX, n = 10), melatonin day treatment group (OVX + MD, n = 10), and melatonin night treatment group (OVX + MN, n = 10). The OVX + MD and OVX + MN rats were treated with 30 mg/kg/day melatonin at 9 am and 9 pm, respectively, for 12 weeks. At the end of the research, the rats were killed to obtain bilateral femora and blood samples for evaluation.Aims
Methods
To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle.Aims
Methods
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors. Cite this article:
Adolescent idiopathic scoliosis (AIS), defined by an age at presentation of 11 to 18 years, has a prevalence of 0.47% and accounts for approximately 90% of all cases of idiopathic scoliosis. Despite decades of research, the exact aetiology of AIS remains unknown. It is becoming evident that it is the result of a complex interplay of genetic, internal, and environmental factors. It has been hypothesized that genetic variants act as the initial trigger that allow epigenetic factors to propagate AIS, which could also explain the wide phenotypic variation in the presentation of the disorder. A better understanding of the underlying aetiological mechanisms could help to establish the diagnosis earlier and allow a more accurate prediction of deformity progression. This, in turn, would prompt imaging and therapeutic intervention at the appropriate time, thereby achieving the best clinical outcome for this group of patients. Cite this article:
A number of anti-retroviral therapies (ART) have been implicated in potentially contributing to HIV-associated bone disease. The aim of this study was to evaluate the effect of combination ART on the fracture healing process. A total of 16 adult male Wistar rats were randomly divided into two groups (n = eight each): Group 1 was given a combination of Tenfovir 30 mg, Lamivudine 30 mg, and Efavirenz 60 mg per day orally, whereas Group 2 was used as a control. After one week of medication preload, all rats underwent a standardized surgical procedure of mid-shaft tibial osteotomy fixed by intramedullary nail with no gap at the fracture site. Progress in fracture healing was monitored regularly for eight weeks. Further evaluations were carried out after euthanasia by micro-CT, mechanically and histologically. Two blinded orthopaedic surgeons used the Radiological Union Scoring system for the Tibia (RUST) to determine fracture healing.Aims
Methods
To verify whether secretory leucocyte protease inhibitor (SLPI) can promote early tendon-to-bone healing after anterior cruciate ligament (ACL) reconstruction. In vitro: the mobility of the rat bone mesenchymal stem cells (BMSCs) treated with SLPI was evaluated by scratch assay. Then the expression levels of osteogenic differentiation-related genes were analyzed by real-time quantitative PCR (qPCR) to determine the osteogenic effect of SLPI on BMSCs. In vivo: a rat model of ACL reconstruction was used to verify the effect of SLPI on tendon-to-bone healing. All the animals of the SLPI group and the negative control (NC) group were euthanized for histological evaluation, micro-CT scanning, and biomechanical testing.Aims
Methods
Alcoholism is a well-known detrimental factor in fracture healing. However, the underlying mechanism of alcohol-inhibited fracture healing remains poorly understood. MicroRNA (miR) sequencing was performed on bone mesenchymal stem cells (BMSCs). The effects of alcohol and miR-19a-3p on vascularization and osteogenic differentiation were analyzed in vitro using BMSCs and human umbilical vein endothelial cells (HUVECs). An in vivo alcohol-fed mouse model of femur fracture healing was also established, and radiological and histomorphometric analyses were used to evaluate the role of miR-19a-3p. The binding of miR-19a-3p to forkhead box F2 (FOXF2) was analyzed using a luciferase reporter assay.Aims
Methods
To develop an early implant instability murine model and explore the use of intermittent parathyroid hormone (iPTH) treatment for initially unstable implants. 3D-printed titanium implants were inserted into an oversized drill-hole in the tibiae of C57Bl/6 mice (n = 54). After implantation, the mice were randomly divided into three treatment groups (phosphate buffered saline (PBS)-control, iPTH, and delayed iPTH). Radiological analysis, micro-CT (µCT), and biomechanical pull-out testing were performed to assess implant loosening, bone formation, and osseointegration. Peri-implant tissue formation and cellular composition were evaluated by histology.Aims
Methods
There has been a marked increase in the number of hip arthroscopies performed over the past 16 years, primarily in the management of femoroacetabular impingement (FAI). Insights into the pathoanatomy of FAI, and high-level evidence supporting the clinical effectiveness of arthroscopy in the management of FAI, have fuelled this trend. Arthroscopic management of labral tears with repair may have superior results compared with debridement, and there is now emerging evidence to support reconstructive options where repair is not possible. In situations where an interportal capsulotomy is performed to facilitate access, data now support closure of the capsule in selective cases where there is an increased risk of postoperative instability. Preoperative planning is an integral component of bony corrective surgery in FAI, and this has evolved to include computer-planned resection. However, the benefit of this remains controversial. Hip instability is now widely accepted, and diagnostic criteria and treatment are becoming increasingly refined. Instability can also be present with FAI or develop as a result of FAI treatment. In this annotation, we outline major current controversies relating to decision-making in hip arthroscopy for FAI. Cite this article:
This study aimed to identify the effect of anatomical tibial component (ATC) design on load distribution in the periprosthetic tibial bone of Koreans using finite element analysis (FEA). 3D finite element models of 30 tibiae in Korean women were created. A symmetric tibial component (STC, NexGen LPS-Flex) and an ATC (Persona) were used in surgical simulation. We compared the FEA measurements (von Mises stress and principal strains) around the stem tip and in the medial half of the proximal tibial bone, as well as the distance from the distal stem tip to the shortest anteromedial cortical bone. Correlations between this distance and FEA measurements were then analyzed.Aims
Methods
The aim of this study was to assess the clinical and radiological outcomes of an antiprotrusio acetabular cage (APC) when used in the surgical treatment of periacetabular bone metastases. This retrospective cohort study using a prospectively collected database involved 56 patients who underwent acetabular reconstruction for periacetabular bone metastases or haematological malignancy using a single APC between January 2009 and 2020. The mean follow-up was 20 months (1 to 143). The primary outcome measure was implant survival. Postoperative radiographs were analyzed for loosening and failure. Patient and implant survival were assessed using a competing risk analysis. Secondary parameters included primary malignancy, oncological treatment, surgical factors, length of stay in hospital, and postoperative complications.Aims
Methods
The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery. A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model.Aims
Methods
The ideal management of acute syndesmotic injuries in elite athletes is controversial. Among several treatment methods used to stabilize the syndesmosis and facilitate healing of the ligaments, the use of suture tape (InternalBrace) has previously been described. The purpose of this study was to analyze the functional outcome, including American Orthopaedic Foot & Ankle Society (AOFAS) scores, knee-to-wall measurements, and the time to return to play in days, of unstable syndesmotic injuries treated with the use of the InternalBrace in elite athletes. Data on a consecutive group of elite athletes who underwent isolated reconstruction of the anterior inferior tibiofibular ligament using the InternalBrace were collected prospectively. Our patient group consisted of 19 elite male athletes with a mean age of 24.5 years (17 to 52). Isolated injuries were seen in 12 patients while associated injuries were found in seven patients (fibular fracture, medial malleolus fracture, anterior talofibular ligament rupture, and posterior malleolus fracture). All patients had a minimum follow-up period of 17 months (mean 27 months (17 to 35)).Aims
Methods
To fully verify the reliability and reproducibility of an experimental method in generating standardized micromotion for the rat femur fracture model. A modularized experimental device has been developed that allows rat models to be used instead of large animal models, with the aim of reducing systematic errors and time and money constraints on grouping. The bench test was used to determine the difference between the measured and set values of the micromotion produced by this device under different simulated loading weights. The displacement of the fixator under different loading conditions was measured by compression tests, which was used to simulate the unexpected micromotion caused by the rat’s ambulation. In vivo preliminary experiments with a small sample size were used to test the feasibility and effectiveness of the whole experimental scheme and surgical scheme.Aims
Methods
Hip arthroplasty does not always restore normal anatomy. This is due to inaccurate surgery or lack of stem sizes. We evaluated the aptitude of four total hip arthroplasty systems to restore an anatomical and medialized hip rotation centre. Using 3D templating software in 49 CT scans of non-deformed femora, we virtually implanted: 1) small uncemented calcar-guided stems with two offset options (Optimys, Mathys), 2) uncemented straight stems with two offset options (Summit, DePuy Synthes), 3) cemented undersized stems (Exeter philosophy) with three offset options (CPT, ZimmerBiomet), and 4) cemented line-to-line stems (Kerboul philosophy) with proportional offsets (Centris, Mathys). We measured the distance between the templated and the anatomical and 5 mm medialized hip rotation centre.Aims
Methods
Cement-in-cement revision of the femoral component represents a widely practised technique for a variety of indications in revision total hip arthroplasty. In this study, we compare the clinical and radiological outcomes of two polished tapered femoral components. From our prospectively collated database, we identified all patients undergoing cement-in-cement revision from January 2005 to January 2013 who had a minimum of two years' follow-up. All cases were performed by the senior author using either an Exeter short revision stem or the C-Stem AMT high offset No. 1 prosthesis. Patients were followed-up annually with clinical and radiological assessment.Aims
Methods
Stemmed tibial components are frequently used in revision total knee arthroplasty (TKA). The purpose of this study was to evaluate patient satisfaction, overall pain, and diaphyseal tibial pain in patients who underwent revision TKA with cemented or uncemented stemmed tibial components. This is a retrospective cohort study involving 110 patients with revision TKA with cemented versus uncemented stemmed tibial components. Patients who underwent revision TKA with stemmed tibial components over a 15-year period at a single institution with at least two-year follow-up were assessed. Pain was evaluated through postal surveys. There were 63 patients with cemented tibial stems and 47 with uncemented stems. Radiographs and Knee Society Scores were used to evaluate for objective findings associated with pain or patient dissatisfaction. Postal surveys were analyzed using Fisher’s exact test and the independent-samples Aims
Methods
Porous metaphyseal cones can be used for fixation in revision total knee arthroplasty (rTKA) and complex TKAs. This metaphyseal fixation has led to some surgeons using shorter cemented stems instead of diaphyseal engaging cementless stems with a potential benefit of ease of obtaining proper alignment without being beholden to the diaphysis. The purpose of this study was to evaluate short term clinical and radiographic outcomes of a series of TKA cases performed using 3D-printed metaphyseal cones. A retrospective review of 86 rTKAs and nine complex primary TKAs, with an average age of 63.2 years (SD 8.2) and BMI of 34.0 kg/m2 (SD 8.7), in which metaphyseal cones were used for both femoral and tibial fixation were compared for their knee alignment based on the type of stem used. Overall, 22 knees had cementless stems on both sides, 52 had cemented stems on both sides, and 15 had mixed stems. Postoperative long-standing radiographs were evaluated for coronal and sagittal plane alignment. Adjusted logistic regression models were run to assess malalignment hip-knee-ankle (HKA) alignment beyond ± 3° and sagittal alignment of the tibial and femoral components ± 3° by stem type.Aims
Methods
The main aims were to identify risk factors predictive of a radiolucent line (RLL) around the acetabular component with an interface bioactive bone cement (IBBC) technique in the first year after THA, and evaluate whether these risk factors influence the development of RLLs at five and ten years after THA. A retrospective review was undertaken of 980 primary cemented THAs in 876 patients using cemented acetabular components with the IBBC technique. The outcome variable was any RLLs that could be observed around the acetabular component at the first year after THA. Univariate analyses with univariate logistic regression and multivariate analyses with exact logistic regression were performed to identify risk factors for any RLLs based on radiological classification of hip osteoarthritis.Aims
Methods
Aims. Rotator cuff (RC) tears are common musculoskeletal injuries which often require surgical intervention. Noninvasive pulsed electromagnetic field (PEMF) devices have been approved for treatment of long-bone fracture nonunions and as an adjunct to lumbar and cervical spine fusion surgery. This study aimed to assess the effect of continuous PEMF on postoperative RC healing in a rat RC repair model. Methods. A total of 30 Wistar rats underwent acute bilateral supraspinatus tear and repair. A miniaturized electromagnetic device (MED) was implanted at the right shoulder and generated focused PEMF therapy. The animals’ left shoulders served as controls.
Total hip arthroplasty (THA) patients undergoing or having a prior lumbar spine fusion (LSF) have an increased risk of mechanical complications. The aim of this registry-based, retrospective comparative cohort study is to assess the longer term survival of THA in patients who have undergone a LSF during a 17-year period (2000 to 2017). A registry-based population study was conducted on 679 patients who underwent both THA and LSF surgeries. Patients were identified from the regional arthroplasty data base and cross linked to patients with LSF from the regional hospital discharge database between 2000 and 2017. Demographic data, diagnosis leading to primary THA, primary implant survival, perioperative complications, number and causes of failure, and patients requiring revision arthroplasty were collated and compared. For comparison, data from 67,919 primary THAs performed during the same time time period were also retrieved and analyzed.Aims
Methods
Minimally invasive fixation of pelvic fragility fractures is recommended to reduce pain and allow early mobilization. The purpose of this study was to evaluate the outcome of two different stabilization techniques in bilateral fragility fractures of the sacrum (BFFS). A non-randomized, prospective study was carried out in a level 1 trauma centre. BFFS in 61 patients (mean age 80 years (SD 10); four male, 57 female) were treated surgically with bisegmental transsacral stablization (BTS; n = 41) versus spinopelvic fixation (SP; n = 20). Postoperative full weightbearing was allowed. The outcome was evaluated at two timepoints: discharge from inpatient treatment (TP1; Fitbit tracking, Zebris stance analysis), and ≥ six months (TP2; Fitbit tracking, Zebris analysis, based on modified Oswestry Disability Index (ODI), Majeed Score (MS), and the 12-Item Short Form Survey 12 (SF-12). Fracture healing was assessed by CT. The primary outcome parameter of functional recovery was the per-day step count; the secondary parameter was the subjective outcome assessed by questionnaires.Aims
Methods