The frequency of severe femoral retroversion is unclear in patients with femoroacetabular impingement (FAI). This study aimed to investigate mean femoral version (FV), the frequency of absolute femoral retroversion, and the combination of decreased FV and acetabular retroversion (AR) in symptomatic patients with FAI subtypes. A retrospective institutional review board-approved observational study was performed with 333 symptomatic patients (384 hips) with hip pain due to FAI evaluated for hip preservation surgery. Overall, 142 patients (165 hips) had cam-type FAI, while 118 patients (137 hips) had mixed-type FAI. The allocation to each subgroup was based on reference values calculated on anteroposterior radiographs. CT/MRI-based measurement of FV (Murphy method) and AV were retrospectively compared among five FAI subgroups. Frequency of decreased FV < 10°, severely decreased FV < 5°, and absolute femoral retroversion (FV < 0°) was analyzed.Aims
Methods
The aim of this study was to estimate the 90-day risk of revision for periprosthetic femoral fracture associated with design features of cementless femoral stems, and to investigate the effect of a collar on this risk using a biomechanical A total of 337 647 primary total hip arthroplasties (THAs) from the United Kingdom National Joint Registry (NJR) were included in a multivariable survival and regression analysis to identify the adjusted hazard of revision for periprosthetic fracture following primary THA using a cementless stem. The effect of a collar in cementless THA on this risk was evaluated in an Aims
Materials and Methods
Aims. The primary aim of this study was to define and quantify three
new measurements to indicate the position of the greater trochanter.
Secondary aims were to define ‘functional antetorsion’ as it relates
to abductor function in populations both with and without torsional
abnormality. Patients and Methods. Three new measurements, functional antetorsion, posterior tilt,
and posterior translation of the greater trochanter, were assessed
from 61 CT scans of
This paper describes the methodology, validation and reliability
of a new computer-assisted method which uses models of the patient’s
bones and the components to measure their migration and polyethylene
wear from radiographs after total hip arthroplasty (THA). Models of the patient’s acetabular and femoral component obtained
from the manufacturer and models of the patient’s pelvis and femur
built from a single computed tomography (CT) scan, are used by a
computer program to measure the migration of the components and
the penetration of the femoral head from anteroposterior and lateral radiographs
taken at follow-up visits. The program simulates the radiographic
setup and matches the position and orientation of the models to
outlines of the pelvis, the acetabular and femoral component, and
femur on radiographs. Changes in position and orientation reflect
the migration of the components and the penetration of the femoral
head. Validation was performed using radiographs of phantoms simulating
known migration and penetration, and the clinical feasibility of
measuring migration was assessed in two patients.Aims
Materials and Methods
Favourable results for collarless polished tapered stems have been reported, and cement creep due to taper slip may be a contributing factor. However, the ideal cement thickness around polished stems remains unknown. We investigated the influence of cement thickness on stem subsidence and cement creep. We cemented six collarless polished tapered (CPT) stems (two stems each of small, medium and large sizes) into composite femurs that had been reamed with a large CPT rasp to achieve various thicknesses of the cement mantle. Two or three tantalum balls were implanted in the proximal cement in each femur. A cyclic loading test was then performed for each stem. The migration of the balls was measured three-dimensionally, using a micro-computed tomography (CT) scanner, before and after loading. A digital displacement gauge was positioned at the stem shoulder, and stem subsidence was measured continuously by the gauge. Final stem subsidence was measured at the balls at the end of each stem.Objectives
Methods
Objectives. Studies reporting specifically on squeaking in total hip arthroplasty have focused on cementless, and not on hybrid, fixation. We hypothesised that the cement mantle of the femur might have a damping effect on the sound transmitted through the metal stem. The objective of this study was to test the effect of cement on sound propagation along different stem designs and under different fixation conditions. Methods. An in vitro model for sound detection, composed of a mechanical suspension structure and a sound-registering electronic assembly, was designed. A pulse of sound in the audible range was propagated along bare stems and stems implanted in
In In a hip fracture experiment, nine pairs of human cadaver femurs
were tested in a paired study design. The femurs were then re-matched
according to BMD, creating two new test groups. Intra-pair variance
and paired correlations in fixation stability were calculated. A
hypothetical power analysis was then performed to explore the required sample
size for the two types of group allocation. Objective
Methods
The piriformis muscle is an important landmark
in the surgical anatomy of the hip, particularly the posterior approach
for total hip replacement (THR). Standard orthopaedic teaching dictates
that the tendon must be cut in to allow adequate access to the superior
part of the acetabulum and the femoral medullary canal. However,
in our experience a routine THR can be performed through a posterior
approach without sacrificing this tendon. We dissected the proximal femora of 15 cadavers in order to clarify
the morphological anatomy of the piriformis tendon. We confirmed
that the tendon attaches on the crest of the greater trochanter,
in a position superior to the trochanteric fossa, away from the
entry point for broaching the intramedullary canal during THR. The
tendon attachment site encompassed the summit and medial aspect
of the greater trochanter as well as a variable attachment to the
fibrous capsule of the hip joint. In addition we dissected seven
cadavers resecting all posterior attachments except the piriformis
muscle and tendon in order to study their relations to the hip joint,
as the joint was flexed. At flexion of 90° the piriformis muscle
lay directly posterior to the hip joint. The piriform fossa is a term used by orthopaedic surgeons to
refer the trochanteric fossa and normally has no relation to the
attachment site of the piriformis tendon. In hip flexion the piriformis
lies directly behind the hip joint and might reasonably be considered
to contribute to the stability of the joint. We conclude that the anatomy of the piriformis muscle is often
inaccurately described in the current surgical literature and terms
are used and interchanged inappropriately. Cite this article:
With greater numbers of younger patients undergoing
total hip replacement (THR), the effect of patient age on the diameter
of the femoral canal may become more relevant. This study aimed
to investigate the relationship between the diameter of the diaphysis
of the femoral canal with increasing age in a large number of patients
who underwent THR. A total of 1685 patients scheduled for THR had
their femoral dimensions recorded from calibrated radiographs. There
were 736 males and 949 females with mean ages of 67.1 years (34
to 92) and 70.2 years (29 to 92), respectively. The mean diameter
of the femoral canal was 13.3 mm (8.0 to 23.0) for males and 12.7
mm (6.0 to 26.0) for females. There was a poor correlation between
age and the diameter of the canal in males (r = 0.071, p = 0.05)
but a stronger correlation in females (r = 0.31, p <
0.001). The diameter of the femoral canal diameter of a female patient
undergoing THR could be predicted to increase by 3.2 mm between
the ages of 40 and 80 years, in contrast a male would be expected
to experience only a 0.6 mm increase during the same period. This
increase in the diameter of the canal with age might affect the
long-term survival of the femoral component in female patients. Cite this article:
The computed neck-shaft angle and the size of the femoral component were recorded in 100 consecutive hip resurfacings using imageless computer-navigation and compared with the angle measured before operation and with actual component implanted. The reliability of the registration was further analysed using ten cadaver femora. The mean absolute difference between the measured and navigated neck-shaft angle was 16.3° (0° to 52°). Navigation underestimated the measured neck-shaft angle in 38 patients and the correct implant size in 11. Registration of the cadaver femora tended to overestimate the correct implant size and provided a low level of repeatability in computing the neck-shaft angle. Prudent pre-operative planning is advisable for use in conjunction with imageless navigation since misleading information may be registered intraoperatively, which could lead to inappropriate sizing and positioning of the femoral component in hip resurfacing.