Loosening of components after total knee arthroplasty (TKA) can be associated with the development of radiolucent lines (RLLs). The aim of this study was to assess the rate of formation of RLLs in the cemented original design of the ATTUNE TKA and their relationship to loosening. A systematic search was undertaken using the Cochrane methodology in three online databases: MEDLINE, Embase, and CINAHL. Studies were screened against predetermined criteria, and data were extracted. Available National Joint Registries in the Network of Orthopaedic Registries of Europe were also screened. A random effects model meta-analysis was undertaken.Aims
Methods
The aim of this study was to determine the risk of tibial eminence avulsion intraoperatively for bi-unicondylar knee arthroplasty (Bi-UKA), with consideration of the effect of implant positioning, overstuffing, and sex, compared to the risk for isolated medial unicondylar knee arthroplasty (UKA-M) and bicruciate-retaining total knee arthroplasty (BCR-TKA). Two experimentally validated finite element models of tibia were implanted with UKA-M, Bi-UKA, and BCR-TKA. Intraoperative loads were applied through the condyles, anterior cruciate ligament (ACL), medial collateral ligament (MCL), and lateral collateral ligament (LCL), and the risk of fracture (ROF) was evaluated in the spine as the ratio of the 95th percentile maximum principal elastic strains over the tensile yield strain of proximal tibial bone.Aims
Methods
A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions.Aims
Methods
The aim of this study was to investigate whether wear and backside deformation of polyethylene (PE) tibial inserts may influence the cement cover of tibial trays of explanted total knee arthroplasties (TKAs). At our retrieval centre, we measured changes in the wear and deformation of PE inserts using coordinate measuring machines and light microscopy. The amount of cement cover on the backside of tibial trays was quantified as a percentage of the total surface. The study involved data from the explanted fixed-bearing components of four widely used contemporary designs of TKA (Attune, NexGen, Press Fit Condylar (PFC), and Triathlon), revised for any indication, and we compared them with components that used previous generations of PE. Regression modelling was used to identify variables related to the amount of cement cover on the retrieved trays.Aims
Methods
Aims. The aims of this study were to evaluate wear on the surface of cobalt-chromium (CoCr) femoral components used in total knee arthroplasty (TKA) and compare the wear of these components with that of ceramic femoral components. Methods. Optical profilometry was used to evaluate surface roughness and to examine the features created by the wear process in a knee wear simulator. We developed a method of measuring surface changes on five CoCr femoral components and quantifying the loss of material from the articular surface during the wear process. We also examined the articular surface of three ceramic femoral components from a previous test for evidence of surface damage, and compared it with that of CoCr components. Results. We found that the surface roughness of CoCr components rapidly increased during the first 1,000 wear cycles, then reached a steady state, but material loss from the surface continued at a rate of 1,778,000 μm. 3. per million cycles as carbides were removed from its matrix. These carbides formed third-body wear particles, leading to the formation of new scratches even as older scratches were worn away. In contrast, no scratching, loss of material, or other surface damage, when evaluated with one nanometer resolution, was found on the surface of the ceramic components after a 15 M wear cycle test. Conclusion. This study showed wear and loss of
Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition.Aims
Methods
We propose a state-of-the-art temporary spacer, consisting of a cobalt-chrome (CoCr) femoral component and a gentamicin-eluting ultra-high molecular weight polyethylene (UHMWPE) tibial insert, which can provide therapeutic delivery of gentamicin, while retaining excellent mechanical properties. The proposed implant is designed to replace conventional spacers made from bone cement. Gentamicin-loaded UHMWPE was prepared using phase-separated compression moulding, and its drug elution kinetics, antibacterial, mechanical, and wear properties were compared with those of conventional gentamicin-loaded bone cement.Aims
Methods
Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component. Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.Aims
Methods
Bone void fillers are increasingly being used for dead space management in arthroplasty revision surgery. The aim of this study was to investigate the influence of calcium sulphate bone void filler (CS-BVF) on the damage and wear of total knee arthroplasty using experimental wear simulation. A total of 18 fixed-bearing U2 total knee arthroplasty system implants (United Orthopedic Corp., Hsinchu, Taiwan) were used. Implants challenged with CS-BVF were compared with new implants (negative controls) and those intentionally scratched with a diamond stylus (positive controls) representative of severe surface damage (n = 6 for each experimental group). Three million cycles (MC) of experimental simulation were carried out to simulate a walking gait cycle. Wear of the ultra-high-molecular-weight polyethylene (UHMWPE) tibial inserts was measured gravimetrically, and damage to articulating surfaces was assessed using profilometry.Objectives
Methods
Aims. The treatment of patients with allergies to metal in total joint arthroplasty is an ongoing debate. Possibilities include the use of hypoallergenic prostheses, as well as the use of standard cobalt-chromium (CoCr) alloy. This non-designer study was performed to evaluate the clinical outcome and survival rates of unicondylar knee arthroplasty (UKA) using a standard
Malalignment of the tibial component could influence the long-term survival of a total knee arthroplasty (TKA). The object of this study was to investigate the biomechanical effect of varus and valgus malalignment on the tibial component under stance-phase gait cycle loading conditions. Validated finite element models for varus and valgus malalignment by 3° and 5° were developed to evaluate the effect of malalignment on the tibial component in TKA. Maximum contact stress and contact area on a polyethylene insert, maximum contact stress on patellar button and the collateral ligament force were investigated.Objectives
Methods
Aims. We sought to establish whether an oxidised zirconium (OxZr) femoral
component causes less loss of polyethylene volume than a cobalt
alloy (CoCr) femoral component in total knee arthroplasty. Materials and Methods. A total of 20 retrieved tibial inserts that had articulated with
OxZr components were matched with 20 inserts from
Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed.Objectives
Materials and Methods
Oxidised zirconium was introduced as a material for femoral components
in total knee arthroplasty (TKA) as an attempt to reduce polyethylene
wear. However, the long-term survival of this component is not known. We performed a retrospective review of a prospectively collected
database to assess the ten year survival and clinical and radiological
outcomes of an oxidised zirconium total knee arthroplasty with the
Genesis II prosthesis. The Western Ontario and McMaster Universities Osteoarthritis
Index (WOMAC), Knee Injury and Osteoarthritis Outcome Score (KOOS)
and a patient satisfaction scale were used to assess outcome.Aims
Methods
The outcome of total knee replacement (TKR) using
components designed to increase the range of flexion is not fully
understood. The short- to mid-term risk of aseptic revision in high
flexion TKR was evaluated. The endpoint of the study was aseptic
revision and the following variables were investigated: implant
design (high flexion In a cohort of 64 000 TKRs, high flexion components were used
in 8035 (12.5%). The high flexion knees with tibial liners of thickness
>
14 mm had a density of revision of 1.45/100 years of observation,
compared with 0.37/100 in non-high flexion TKR with liners ≤ 14
mm thick. Relative to a standard fixed PS TKR, the NexGen (Zimmer,
Warsaw, Indiana) Gender Specific Female high flexion fixed PS TKR
had an increased risk of revision (hazard ratio (HR) 2.27 (95% confidence
interval (CI) 1.48 to 3.50)), an effect that was magnified when
a thicker tibial insert was used (HR 8.10 (95% CI 4.41 to 14.89)). Surgeons should be cautious when choosing high flexion TKRs,
particularly when thicker tibial liners might be required. Cite this article:
Focal femoral inlay resurfacing has been developed
for the treatment of full-thickness chondral defects of the knee. This
technique involves implanting a defect-sized metallic or ceramic
cap that is anchored to the subchondral bone through a screw or
pin. The use of these experimental caps has been advocated in middle-aged
patients who have failed non-operative methods or biological repair
techniques and are deemed unsuitable for conventional arthroplasty
because of their age. This paper outlines the implant design, surgical
technique and biomechanical principles underlying their use. Outcomes
following implantation in both animal and human studies are also reviewed. Cite this article:
Despite many claims of good wear properties following
total knee replacement (TKR) with an oxidised zirconium (OxZr) femoral
component, there are conflicting clinical results. We hypothesised
that there would be no difference in either the mid-term clinical
and radiological outcomes or the characteristics of the polyethylene
wear particles (weight, size and shape) in patients using an OxZr
or cobalt-chrome (CoCr) femoral component. In all 331 patients underwent
bilateral TKR, receiving an OxZr femoral component in one knee and
a CoCr femoral component in the other. The mean follow-up was 7.5
years (6 to 8). Following aspiration, polyethylene wear particles
were analysed using thermogravimetric methods and scanning electron
microscopy. At the most recent follow-up, the mean Knee Society
score, Western Ontario and McMaster Universities Osteoarthritis
Index score, range of movement and satisfaction score were not significantly
different in the two groups. The mean weight, size, aspect ratio
and roundness of the aspirated wear particles were similar for each
femoral component. Survivorship of the femoral, tibial and patellar
components was 100% in both groups. In the absence of evidence of an advantage in the medium term
we cannot justify the additional expense of an OxZr femoral component.