Telehealth has the potential to change the way we approach patient care. From virtual consenting to reducing carbon emissions, costs, and waiting times, it is a powerful tool in our clinical armamentarium. There is mounting evidence that remote diagnostic evaluation and decision-making have reached an acceptable level of accuracy and can safely be adopted in orthopaedic surgery. Furthermore, patients’ and surgeons’ satisfaction with virtual appointments are comparable to in-person consultations. Challenges to the widespread use of telehealth should, however, be acknowledged and include the cost of installation, training, maintenance, and accessibility. It is also vital that clinicians are conscious of the medicolegal and ethical considerations surrounding the medium and adhere strictly to the relevant data protection legislation and storage framework. It remains to be seen how organizations harness the full spectrum of the technology to facilitate effective patient care. Cite this article:
Acute bone and joint infections in children are serious, and misdiagnosis can threaten limb and life. Most young children who present acutely with pain, limping, and/or loss of function have transient synovitis, which will resolve spontaneously within a few days. A minority will have a bone or joint infection. Clinicians are faced with a diagnostic challenge: children with transient synovitis can safely be sent home, but children with bone and joint infection require urgent treatment to avoid complications. Clinicians often respond to this challenge by using a series of rudimentary decision support tools, based on clinical, haematological, and biochemical parameters, to differentiate childhood osteoarticular infection from other diagnoses. However, these tools were developed without methodological expertise in
Injury to the triangular fibrocartilage complex (TFCC) may result in ulnar wrist pain with or without instability. One component of the TFCC, the radioulnar ligaments, serve as the primary soft-tissue stabilizer of the distal radioulnar joint (DRUJ). Tears or avulsions of its proximal, foveal attachment are thought to be associated with instability of the DRUJ, most noticed during loaded pronosupination. In the absence of detectable instability, injury of the foveal insertion of the radioulnar ligaments may be overlooked. While advanced imaging techniques such as MRI and radiocarpal arthroscopy are well-suited for diagnosing central and distal TFCC tears, partial and complete foveal tears without instability may be missed without a high degree of suspicion. While technically challenging, DRUJ arthroscopy provides the most accurate method of detecting foveal abnormalities. In this annotation the spectrum of foveal injuries is discussed and a modified classification scheme is proposed. Cite this article:
Artificial intelligence and machine-learning analytics have gained extensive popularity in recent years due to their clinically relevant applications. A wide range of proof-of-concept studies have demonstrated the ability of these analyses to personalize risk prediction, detect implant specifics from imaging, and monitor and assess patient movement and recovery. Though these applications are exciting and could potentially influence practice, it is imperative to understand when these analyses are indicated and where the data are derived from, prior to investing resources and confidence into the results and conclusions. In this article, we review the current benefits and potential limitations of machine-learning for the orthopaedic surgeon with a specific emphasis on data quality.
Deep infection was identified as a serious complication in the earliest days of total hip arthroplasty. It was identified that airborne contamination in conventional operating theatres was the major contributing factor. As progress was made in improving the engineering of operating theatres, airborne contamination was reduced. Detailed studies were carried out relating airborne contamination to deep infection rates. In a trial conducted by the United Kingdom Medical Research Council (MRC), it was found that the use of ultra-clean air (UCA) operating theatres was associated with a significant reduction in deep infection rates. Deep infection rates were further reduced by the use of a body exhaust system. The MRC trial also included a detailed microbiology study, which confirmed the relationship between airborne contamination and deep infection rates. Recent observational evidence from joint registries has shown that in contemporary practice, infection rates remain a problem, and may be getting worse. Registry observations have also called into question the value of “laminar flow” operating theatres. Observational evidence from joint registries provides very limited evidence on the efficacy of UCA operating theatres. Although there have been some changes in surgical practice in recent years, the conclusions of the MRC trial remain valid, and the use of UCA is essential in preventing deep infection. There is evidence that if UCA operating theatres are not used correctly, they may have poor microbiological performance. Current UCA operating theatres have limitations, and further research is required to update them and improve their microbiological performance in contemporary practice. Cite this article: