Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:

Aims

The Peri-Implant and PeriProsthetic Survival AnalysiS (PIPPAS) study aimed to investigate the risk factors for one-year mortality of femoral peri-implant fractures (FPIFs).

Methods

This prospective, multicentre, observational study involved 440 FPIF patients with a minimum one-year follow-up. Data on demographics, clinical features, fracture characteristics, management, and mortality rates were collected and analyzed using both univariate and multivariate analyses. FPIF patients were elderly (median age 87 years (IQR 81 to 92)), mostly female (82.5%, n = 363), and frail: median clinical frailty scale 6 (IQR 4 to 7), median Pfeiffer 4 (1 to 7), median age-adjusted Charlson Comorbidity Index (CCI) 6 (IQR 5 to 7), and 58.9% (n = 250) were American Society of Anesthesiologists grade III.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1648 - 1655
1 Nov 2021
Jeong S Hwang K Oh C Kim J Sohn OJ Kim JW Cho Y Park KC

Aims

The incidence of atypical femoral fractures (AFFs) continues to increase. However, there are currently few long-term studies on the complications of AFFs and factors affecting them. Therefore, we attempted to investigate the outcomes, complications, and risk factors for complication through mid-term follow-up of more than three years.

Methods

From January 2003 to January 2016, 305 patients who underwent surgery for AFFs at six hospitals were enrolled. After exclusion, a total of 147 patients were included with a mean age of 71.6 years (48 to 89) and 146 of whom were female. We retrospectively evaluated medical records, and reviewed radiographs to investigate the fracture site, femur bowing angle, presence of delayed union or nonunion, contralateral AFFs, and peri-implant fracture. A statistical analysis was performed to identify the significance of associated factors.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1475 - 1483
7 Nov 2020
Oliver WM Searle HKC Ng ZH Wickramasinghe NRL Molyneux SG White TO Clement ND Duckworth AD

Aims

The aim of this study was to determine the current incidence and epidemiology of humeral diaphyseal fractures. The secondary aim was to explore variation in patient and injury characteristics by fracture location within the humeral diaphysis.

Methods

Over ten years (2008 to 2017), all adult patients (aged ≥ 16 years) sustaining an acute fracture of the humeral diaphysis managed at the study centre were retrospectively identified from a trauma database. Patient age, sex, medical/social background, injury mechanism, fracture classification, and associated injuries were recorded and analyzed.


The Bone & Joint Journal
Vol. 99-B, Issue 5 | Pages 680 - 685
1 May 2017
Morris R Hossain M Evans A Pallister I

Aims

This study describes the use of the Masquelet technique to treat segmental tibial bone loss in 12 patients.

Patients and Methods

This retrospective case series reviewed 12 patients treated between 2010 and 2015 to determine their clinical outcome. Patients were mostly male with a mean age of 36 years (16 to 62). The outcomes recorded included union, infection and amputation. The mean follow-up was 675 days (403 to 952).


The Bone & Joint Journal
Vol. 96-B, Issue 10 | Pages 1378 - 1384
1 Oct 2014
Weiser L Korecki MA Sellenschloh K Fensky F Püschel K Morlock MM Rueger JM Lehmann W

It is becoming increasingly common for a patient to have ipsilateral hip and knee replacements. The inter-prosthetic (IP) distance, the distance between the tips of hip and knee prostheses, has been thought to be associated with an increased risk of IP fracture. Small gap distances are generally assumed to act as stress risers, although there is no real biomechanical evidence to support this.

The purpose of this study was to evaluate the influence of IP distance, cortical thickness and bone mineral density on the likelihood of an IP femoral fracture.

A total of 18 human femur specimens were randomised into three groups by bone density and cortical thickness. For each group, a defined IP distance of 35 mm, 80 mm or 160 mm was created by choosing the appropriate lengths of component. The maximum fracture strength was determined using a four-point bending test.

The fracture force of all three groups was similar (p = 0.498). There was a highly significant correlation between the cortical area and the fracture strength (r = 0.804, p <  0.001), whereas bone density showed no influence.

This study suggests that the IP distance has little influence on fracture strength in IP femoral fractures: the thickness of the cortex seems to be the decisive factor.

Cite this article: Bone Joint J 2014;96-B:1378–84.


The Bone & Joint Journal
Vol. 95-B, Issue 9 | Pages 1255 - 1262
1 Sep 2013
Clement ND Beauchamp NJF Duckworth AD McQueen MM Court-Brown CM

We describe the outcome of tibial diaphyseal fractures in the elderly (≥ 65 years of age). We prospectively followed 233 fractures in 225 elderly patients over a minimum ten-year period. Demographic and descriptive data were acquired from a prospective trauma database. Mortality status was obtained from the General Register Office database for Scotland. Diaphyseal fractures of the tibia in the elderly occurred predominantly in women (73%) and after a fall (61%). During the study period the incidence of these fractures decreased, nearly halving in number. The 120-day and one-year unadjusted mortality rates were 17% and 27%, respectively, and were significantly greater in patients with an open fracture (p < 0.001). The overall standardised mortality ratio (SMR) was significantly increased (SMR 4.4, p < 0.001) relative to the population at risk, and was greatest for elderly women (SMR 8.1, p < 0.001). These frailer patients had more severe injuries, with an increased rate of open fractures (30%), and suffered a greater rate of nonunion (10%).

Tibial diaphyseal fractures in the elderly are most common in women after a fall, are more likely to be open than in the rest of the population, and are associated with a high incidence of nonunion and mortality.

Cite this article: Bone Joint J 2013;95-B:1255–62.