Surgical treatment of young femoral neck fractures often requires an open approach to achieve an anatomical reduction. The application of a calcar plate has recently been described to aid in femoral neck fracture reduction and to augment fixation. However, application of a plate may potentially compromise the regional vascularity of the femoral head and neck. The purpose of this study was to investigate the effect of calcar femoral neck plating on the vascularity of the femoral head and neck. A Hueter approach and capsulotomy were performed bilaterally in six cadaveric hips. In the experimental group, a one-third tubular plate was secured to the inferomedial femoral neck at 6:00 on the clockface. The contralateral hip served as a control with surgical approach and capsulotomy without fixation. Pre- and post-contrast MRI was then performed to quantify signal intensity in the femoral head and neck. Qualitative assessment of the terminal arterial branches to the femoral head, specifically the inferior retinacular artery (IRA), was also performed.Aims
Methods
We aimed to determine the effect of surgical approach on the
histology of the femoral head following resurfacing of the hip. We performed a histological assessment of the bone under the
femoral component taken from retrieval specimens of patients having
revision surgery following resurfacing of the hip. We compared the
number of empty lacunae in specimens from patients who had originally
had a posterior surgical approach with the number in patients having alternative
surgical approaches.Objectives
Methods
We have reviewed 42 patients who had revision of metal-on-metal resurfacing procedures, mostly because of problems with the acetabular component. The revisions were carried out a mean of 26.2 months (1 to 76) after the initial operation and most of the patients (30) were female. Malpositioning of the acetabular component resulted in 27 revisions, mostly because of excessive abduction (mean 69.9°; 56° to 98°) or insufficient or excessive anteversion. Seven patients had more than one reason for revision. The mean increase in the diameter of the component was 1.8 mm (0 to 4) when exchange was needed. Malpositioning of the components was associated with metallosis and a high level of serum ions. The results of revision of the femoral component to a component with a modular head were excellent, but four patients had dislocation after revision and four required a further revision.
We determined the effect of the surgical approach on perfusion of the femoral head during hip resurfacing arthroplasty by measuring the concentration of cefuroxime in bone samples from the femoral head. A total of 20 operations were performed through either a transgluteal or an extended posterolateral approach. The concentration of cefuroxime in bone was significantly greater when using the transgluteal approach (mean 15.7 mg/kg; 95% confidence interval 12.3 to 19.1) compared with that using the posterolateral approach (mean 5.6 mg/kg; 95% confidence interval 3.5 to 7.8; p <
0.001). In one patient, who had the operation through a posterolateral approach, cefuroxime was undetectable. Using cefuroxime as an indirect measure of blood flow, the posterolateral approach was found to be associated with a significant reduction in the blood supply to the femoral head during resurfacing arthroplasty compared with the transgluteal approach.
During hip resurfacing arthroplasty, excessive valgus positioning or surgical technique can result in notching of the femoral neck. Although mechanical weakening and subsequent fracture of the femoral neck are well described, the potential damage to the retinacular vessels leading to an ischaemic event is relatively unknown. Using laser Doppler flowmetry, we measured the blood flow in 14 osteoarthritic femoral heads during routine total hip replacement surgery, before and after notching of the femoral neck. In ten hips there was a reduction in blood flow of more than 50% from the baseline value after simulated notching of the femoral neck. Our results suggest that