This study provides recommendations on the position
of the implant in reverse shoulder replacement in order to minimise
scapular notching and osteophyte formation. Radiographs from 151
patients who underwent primary reverse shoulder replacement with
a single prosthesis were analysed at a mean follow-up of 28.3 months
(24 to 44) for notching, osteophytes, the position of the glenoid
baseplate, the overhang of the glenosphere, and the prosthesis scapular
neck angle (PSNA). A total of 20 patients (13.2%) had a notch (16 Grade 1 and four
Grade 2) and 47 (31.1%) had an osteophyte. In patients without either
notching or an osteophyte the baseplate was found to be positioned
lower on the glenoid, with greater overhang of the glenosphere and
a lower PSNA than those with notching and an osteophyte. Female patients
had a higher rate of notching than males (13.3% Based on these findings we make recommendations on the placement
of the implant in both male and female patients to avoid notching
and osteophyte formation. Cite this article:
This study was performed to review the safety and outcome of total shoulder replacements in patients who are ≥ 80 years of age. A total of 50 total shoulder replacements in 44 patients at a mean age of 82 years (80 to 89) were studied. Their health and shoulder status, the operation and post-operative course were analysed, including pain, movement, patient satisfaction, medical and surgical complications, radiographs, the need for revision surgery, and implant and patient survival. A total of 27 patients had an ASA classification of III or IV and medical abnormalities were common. Of the 13 shoulders with bony deficiency of the glenoid, nine required grafting. The duration of hospital stay was prolonged and blood transfusions were common. There were no peri-operative deaths. The mean follow-up was for 5.5 years (2 to 12). Pain was significantly reduced (p <
0.001) and movement improved in active elevation and both external and internal rotation (p <
0.001). Using the Neer scale for assessing outcome, 40 (80%) shoulders had an excellent or satisfactory result. There were medical or surgical complications in 17 cases. Four shoulders developed radiological evidence of loosened glenoid components, and three of these had a poor outcome. Three other shoulders required revision, two for instability. By the time of this review 39 of the patients had died from unrelated causes at a mean of 7.5 years (0.8 to 16.4) after surgery. Total shoulder replacement is a relatively effective treatment in this elderly group of patients. However, there is a requirement for more intense patient care in the peri-operative period, and non-fatal medical or surgical complications are common. Most of these elderly patients will have a comfortable functional shoulder for the rest of their lives.
We have investigated the mid-term outcome of total shoulder replacement using a keeled cemented glenoid component and a modern cementing technique with regard to the causes of failure and loosening of the components. Between 1997 and 2003 we performed 96 total shoulder replacements on 88 patients, 24 men and 64 women with a mean age of 69.7 years (31 to 82). The minimum follow-up was five years and at the time of review 87 shoulders (77 patients) were examined at a mean follow-up of 89.1 months (60 to 127). Cumulative survival curves were generated with re-operations (accomplished and planned), survivorship of the proshesis, loosening of the glenoid (defined as tilt >
5° or subsidence >
5 mm), the presence of radiolucent lines and a Constant score of <
30 as the endpoints. There were two re-operations not involving revision of the implants and the survival rate of the prosthesis was 100.0% for the follow-up period, with an absolute Constant score of >
30 as the endpoint the survival rate was 98%. Radiological glenoid loosening was 9% after five years, and 33% after nine years. There was an incidence of 8% of radiolucent lines in more than three of six zones in the immediate post-operative period, of 37.0% after the first year which increased to 87.0% after nine years. There was no correlation between the score of Boileau and the total Constant score at the latest follow-up, but there was correlation between glenoid loosening and pain (p = 0.001). We found that total shoulder replacement had an excellent mid-term survivorship and clinical outcome. The surgical and cementing techniques were related to the decrease in radiolucent lines around the glenoid compared with earlier studies. One concern, however, was the fact that radiolucent lines increased over time and there was a rate of glenoid loosening of 9% after five years and 33% after nine years. This suggests that the design of the glenoid component, and the implantation and cementing techniques may need further improvement.
There are no long-term published results on the survival of a third-generation cemented total shoulder replacement. We describe a clinical and radiological study of the Aequalis total shoulder replacement for a minimum of ten years. Between September 1996 and May 1998, 39 consecutive patients underwent a primary cemented total shoulder replacement using this prosthesis. Data were collected prospectively on all patients each year, for a minimum of ten years, or until death or failure of the prosthesis. At a follow-up of at least ten years, 12 patients had died with the prosthesis intact and two had emigrated, leaving 25 available for clinical review. Of these, 13 had rheumatoid arthritis and 12 osteoarthritis. One refused radiological review leaving 24 with fresh radiographs. Survivorship at ten years was 100% for the humeral component and 92% for the glenoid component. The incidence of lucent lines was low. No humeral component was thought to be at risk and only two glenoid components. The osteoarthritic group gained a mean 65° in forward flexion and their Constant score improved by a mean 41.4 points (13 to 55). The rheumatoid group gained a mean of 24° in flexion and their Constant score improved by 29.4 points. This difference may have been due to failure of the rotator cuff in 75% of the patients with rheumatoid arthritis. Thus a third-generation total shoulder replacement gives an excellent result in patients with osteoarthritis and an intact rotator cuff. Patients with rheumatoid arthritis have a 75% risk of failure of the rotator cuff at ten years.
In a prospective study between 2000 and 2005, 22 patients with primary osteoarthritis of the shoulder had a total shoulder arthroplasty with a standard five-pegged glenoid component, 12 with non-offset humeral head and ten with offset humeral head components. Over a period of 24 months the relative movement of the glenoid component with respect to the scapula was measured using radiostereometric analysis. Nine
We have undertaken a prospective clinical and radiological analysis of 124 shoulder arthroplasties (113 patients) carried out for osteoarthritis. The clinical results showed improvement in the absolute Constant score and the American Shoulder and Elbow Surgeons score of 22 and 43, respectively. Both were statistically significant (p <
0.001). There was no significant difference in the scores after hemiarthroplasty and total arthroplasty in those patients with an intact rotator cuff. When revision was used as the end-point for survival at ten years, survival of 86%, or 90% if glenoid components made of Hylamer sterilised in air were omitted, was obtained in primary osteoarthritis. The most common cause for revision in the hemiarthroplasty group was glenoid pain at a mean of 1.5 years; in the total arthroplasty group it was loosening of the glenoid at a mean of 4.5 years. Analysis of pre-operative factors showed that the risk of gross loosening of the glenoid increased threefold when there was evidence of erosion of the glenoid at operation. Shoulder arthroplasty should not be delayed once symptomatic osteoarthritis has been established and should be undertaken before failure of the cuff or erosion of the glenoid are present.