Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
The Bone & Joint Journal
Vol. 99-B, Issue 8 | Pages 1061 - 1066
1 Aug 2017
Refaie R Rushton P McGovern P Thompson D Serrano-Pedraza I Rankin KS Reed M

Aims. The interaction between surgical lighting and laminar airflow is poorly understood. We undertook an experiment to identify any effect contemporary surgical lights have on laminar flow and recommend practical strategies to limit any negative effects. Materials and Methods. Neutrally buoyant bubbles were introduced into the surgical field of a simulated setup for a routine total knee arthroplasty in a laminar flow theatre. Patterns of airflow were observed and the number of bubbles remaining above the surgical field over time identified. Five different lighting configurations were assessed. Data were analysed using simple linear regression after logarithmic transformation. Results. In the absence of surgical lights, laminar airflow was observed, bubbles were cleared rapidly and did not accumulate. If lights were placed above the surgical field laminar airflow was abolished and bubbles rose from the surgical field to the lights then circulated back to the surgical field. The value of the decay parameter (slope) of the two setups differed significantly; no light (b = -1.589) versus one light (b = -0.1273, p < 0.001). Two lights touching (b = -0.1191) above the surgical field had a similar effect to that of a single light (p = 0. 2719). Two lights positioned by arms outstretched had a similar effect (b = -0.1204) to two lights touching (p = 0.998) and one light (p = 0.444). When lights were separated widely (160 cm), laminar airflow was observed but the rate of clearance of the bubbles remained slower (b = -1.1165) than with no lights present (p = 0.004). . Conclusion. Surgical lights have a significantly negative effect on laminar airflow. Lights should be positioned as far away as practicable from the surgical field to limit this effect. Cite this article: Bone Joint J 2017;99-B:1061–6


The Bone & Joint Journal
Vol. 95-B, Issue 5 | Pages 678 - 682
1 May 2013
Holinka J Pilz M Kubista B Presterl E Windhager R

The aim of this study was to evaluate whether coating titanium discs with selenium in the form of sodium selenite decreased bacterial adhesion of Staphylococcus aureus and Staph. epidermidis and impeded osteoblastic cell growth.

In order to evaluate bacterial adhesion, sterile titanium discs were coated with increasing concentrations of selenium and incubated with bacterial solutions of Staph. aureus (ATCC 29213) and Staph. epidermidis (DSM 3269) and stained with Safranin-O. The effect of selenium on osteoblastic cell growth was also observed. The adherence of MG-63 cells on the coated discs was detected by staining with Safranin-O. The proportion of covered area was calculated with imaging software.

The tested Staph. aureus strain showed a significantly reduced attachment on titanium discs with 0.5% (p = 0.011) and 0.2% (p = 0.02) selenium coating. Our test strain from Staph. epidermidis showed a highly significant reduction in bacterial adherence on discs coated with 0.5% (p = 0.0099) and 0.2% (p = 0.002) selenium solution. There was no inhibitory effect of the selenium coating on the osteoblastic cell growth.

Selenium coating is a promising method to reduce bacterial attachment on prosthetic material.

Cite this article: Bone Joint J 2013;95-B:678–82.


The Bone & Joint Journal
Vol. 95-B, Issue 3 | Pages 407 - 410
1 Mar 2013
Legg AJ Hamer AJ

We have recently shown that waste heat from forced-air warming blankets can increase the temperature and concentration of airborne particles over the surgical site. The mechanism for the increased concentration of particles and their site of origin remained unclear. We therefore attempted to visualise the airflow in theatre over a simulated total knee replacement using neutral-buoyancy helium bubbles. Particles were created using a Rocket PS23 smoke machine positioned below the operating table, a potential area of contamination. The same theatre set-up, warming devices and controls were used as in our previous study. This demonstrated that waste heat from the poorly insulated forced-air warming blanket increased the air temperature on the surgical side of the drape by > 5°C. This created convection currents that rose against the downward unidirectional airflow, causing turbulence over the patient. The convection currents increased the particle concentration 1000-fold (2 174 000 particles/m3 for forced-air warming vs 1000 particles/m3 for radiant warming and 2000 particles/m3 for the control) by drawing potentially contaminated particles from below the operating table into the surgical site.

Cite this article: Bone Joint J 2013;95-B:407–10.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 2 | Pages 254 - 256
1 Feb 2012
Legg AJ Cannon T Hamer AJ

Patient warming significantly decreases the risk of surgical site infection. Recently there have been concerns that forced air warming may interfere with unidirectional airflow, potentially posing an increased risk of infection. Our null hypothesis was that forced air and radiant warming devices do not increase the temperature and the number of particles over the surgical site when compared with no warming device. A forced air warming device was compared with a radiant warming device and no warming device as a control. The temperature and number of particles were measured over the surgical site. The theatre was prepared as for a routine lower-limb arthroplasty operation, and the same volunteer was used throughout the study.

Forced air warming resulted in a significant mean increase in the temperature (1.1°C vs 0.4°C, p < 0.0001) and number of particles (1038.2 vs 274.8, p = 0.0087) over the surgical site when compared with radiant warming, which raises concern as bacteria are known to require particles for transport.