There is little information about the management
of peri-prosthetic fracture of the humerus after total shoulder replacement
(TSR). This is a retrospective review of 22 patients who underwent
a revision of their original shoulder replacement for peri-prosthetic
fracture of the humerus with bone loss and/or loose components.
There were 20 women and two men with a mean age of 75 years (61
to 90) and a mean follow-up 42 months (12 to 91): 16 of these had
undergone a previous revision TSR. Of the 22 patients, 12 were treated
with a long-stemmed humeral component that bypassed the fracture.
All their fractures united after a mean of 27 weeks (13 to 94).
Eight patients underwent resection of the proximal humerus with
endoprosthetic replacement to the level of the fracture. Two patients
were managed with a clam-shell prosthesis that retained the original
components. The mean Oxford shoulder score (OSS) of the original
TSRs before peri-prosthetic fracture was 33 (14 to 48). The mean
OSS after revision for fracture was 25 (9 to 31). Kaplan-Meier survival
using re-intervention for any reason as the endpoint was 91% (95%
confidence interval (CI) 68 to 98) and 60% (95% CI 30 to 80) at
one and five years, respectively. There were two revisions for dislocation of the humeral head,
one open reduction for modular humeral component dissociation, one
internal fixation for nonunion, one trimming of a prominent screw
and one re-cementation for aseptic loosening complicated by infection,
ultimately requiring excision arthroplasty. Two patients sustained
nerve palsies. Revision TSR after a peri-prosthetic humeral fracture associated
with bone loss and/or loose components is a salvage procedure that
can provide a stable platform for elbow and hand function. Good
rates of union can be achieved using a stem that bypasses the fracture.
There is a high rate of complications and function is not as good as
with the original replacement.
We report the results of performing a pronating osteotomy of the radius, coupled with other soft-tissue procedures, as part of an upper limb functional surgery programme in tetraplegic patients with supination contractures. In total 12 patients were reviewed with a mean follow-up period of 60 months (12 to 109). Pre-operatively, passive movement ranged from a mean of 19.2° pronation (−70° to 80°) to 95.8° supination (80° to 140°). A pronating osteotomy of the radius was then performed with release of the interosseous membrane. Extension of the elbow was restored postoperatively in 11 patients, with key-pinch reconstruction in nine. At the final follow-up every patient could stabilise their hand in pronation, with a mean active range of movement of 79.6° (60° to 90°) in pronation and 50.4° (0° to 90°) in supination. No complications were observed. The mean strength of extension of the elbow was 2.7 (2 to 3) MRC grading. Pronating osteotomy stabilises the hand in pronation while preserving supination, if a complete release of the interosseous membrane is also performed. This technique fits well into surgical programmes for enhancing upper limb function.
We retrospectively reviewed 11 consecutive patients with an infected reverse shoulder prosthesis. Patients were assessed clinically and radiologically, and standard laboratory tests were carried out. Peroperative samples showed Propionbacterium acnes in seven, coagulase-negative Staphylococcus in five, methicillin-resistant staphylococcus aureus in one and Escherichia coli in one. Two multibacterial and nine monobacterial infections were seen. Post-operatively, patients were treated with intravenous cefazolin for at least three days and in all antibiotic therapy was given for at least three months. Severe pain (3 of 11) or severe limitation of function (3 of 11) are not necessarily seen. A fistula was present in eight, but function was not affected. All but one patient were considered free of infection after one-stage revision at a median follow-up of 24 months, and without antibiotic treatment for a minimum of six months. One patient had a persistent infection despite a
In nine patients of median age 34 years who had sustained an amputation of the thumb at a median 24 (5 to 131) months previously, we lengthened the first metacarpal by 30 (17 to 36) mm. Seven amputations had been through the proximal phalanx and two through the metacarpal. The first two patients had autogenous grafting at a